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The paper presents a complete description of the periodic solutions of the Duffing equation:
i+ 2A0+y* = cost

for large values of the forcing I and the damping A. [t contains a proof that the equation admits

of an infinite sequence of bifurcation curves in the I — A plane, alternately of the saddle-node

Hh]l[)l_\' Z_’I—[)i‘l‘h i Lvpe. whose maxima le at large [ along the lme:
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and odd periodic

Inln '+ (1)

T
T

where (") has a finite limit as ' — oc. The positions of the maxima are interlaced in
asymptotically equal intervals of I'V? with a spacing of 1.403 units. For A > A(I'). the Duffing
equation adimits of a unique periodic solution if [' is high enough.

These results are obtained by showing that the hall-period Poimcaré map offered by the
Dhffing equation is asyimptotically equivalent to a map of a circle into itself, according to:

v = Geos(y + X)
where y 1s an angular variable and 3, ¥ depend on I, A. The numerical constants appearing

i the circle map and its corrections are determined in the limit I' — oo by a parameter-free
}hnl]l]i]i!l‘.\' ln.\'i‘l‘ millnlfn m and its variation.

Keywords: Forced dulling equation: bifurcation sequences; bifurcation diagrams; periodie solu-
tiong; circle map; Poincaré mapping; asvinptotic behavior of differential equations; transition
to chaotic motion; averaging methods; WKB approximation; boundary layer theory; smgular

perturhations.

1. Introduction

This paper is concerned with the Duffing equation
with external forcing and damping in its simplest
form:

i + 2A7 +y° = I cost. (1)
This equation exhibits a large variety of periodic
solutions. possibly with periods different from that
of the driving force and whose munber changes with
the values of the parameters A, T". These solutions
may be studied at low foreing by approximate ana-
Ivtic methods {as in the classical books by Hayashi
[1964], Stoker [1950], Hagedorn [1978], Landau and

Lifshitz [1960]) or mumerically in larger domains of
the parameters I, A. There exist well-known dia-
grams, due to Ueda [1980], in the I' — A plane of
the boundaries of regions where (1) admits a cer-
tain tyvpe of periodic solutions, e.g. with a given
period 2mm/n. As the damping is decreased. these
plots become increasingly intricate [Ueda, 1980].
For A = 0.1 a diagram similar to Fig. 1 of Ueda
[1980] extending to T' = 200 may be found in
[Hohler, 1993]. (A similar diagram, somewhat less
detailed, exists in [Sato et al., 1983].) If, at every
fixed I'. A is increased. one reaches always a region
where (1) admits a unique 2m-periodic solution.
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If a 27-periodie solution yp(f) of (1} is unique, then
it is necessarily odd-periodic (i.e. its Fourier series
contains only odd harmonics): indeed, yp(f) =
—1;y{? + ) is also a solution of (1 and. sinee it
is by assumption identical to yp(f). it follows that,
for all #:

yp(t) = —yp(t + 7). (2)

From the I' = A diagrams of [Ueda, 1980] (also
of [Hohler, 1993]) one sees that, moving along a
line of constant A (at an intermediate value, say
0.2 < A 0.5) starting at I' = 0, there is
first a small T-interval where (1) admits a unique
(odd-)periodic solution yp(1): this solution is also
stable: it is an attractor in a Poincaré plot of period
7. At a certain value of I' = 1—{\ a saddle-node
bifurcation oceurs and two new solutions, both odd-
periodic. appear. one of which is stable. the other
unstable. The “earlier” stable solution (1) may be
continied smoothly past I'ky, but “annihilates™ at a
higher I' = T'%,; with the unstable solution originat-
ing at ['L - in a reverse saddle-node bifurcation. The
remaining stable odd periodic solution. now unique,
may be continued in I up to a point 1—'}’7. where it
undergoes a pitchfork bifurcation of a special type:
it becomes unstable when continued past 1—'?- and
two simply 2m-periodic (nof odd-periodic) stable
solutions appear for I' = T'k: these later disappear
again at a higher I—'ff-. if the damping A is high
enough'; at smaller values of A one traverses first
an interval where the two stable solutions above lose
their stability and two further 4m-periodie solutions
appear with a shorter life (in T'); if A issmall enough
one traverses a whole sequence of bifureations lead-
ing to an attracting chaotic motion, presented in
[Ueda, 1980, 1979] in well-known pictures. At val-
ues of I' larger than I—F olle meets again an interval
of uniqueness. up to the next saddle-node bifurea-
tion: for A sufficiently large, the saddle-nodes and
Hip bifurcations interlace.

A detailed study of Eq. (1) at values of the
forcing between ca.850 and ca. 1500 and a damping
A = 0.25 is the object of a paper bv Bvatt-Smith
[1986]; see also [Byatt-Smith, 1987].2 The descrip-
tion of bifurcations given above is complicated by
the appearance of 6r-periodic solutions, which also

I'he index F7on the values of I comes from “Hip”: the pitchfork bifurcation of the pericd 2g
bifurcation of the halkEperiod Poincar® map (see Secs. 3 and 3).
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generate islands of chaotic motion as one moves up
i I'. There are also windows in I'. where no chaotic
motion exists but, e.g. 12m-periodic solutions. A
study of (1) by analogue methods up to I' a2 2000
is presented by Robinson [1989], who points out
the periodicity in 'V of the wav periodic solutions
multiply (and disappear). A recent beautifully illus-
trated deseription of the formidable intricacy of the
bifurcation diagrams for Eq. (1) is given by Bonatto
et al. [2008]. Numerical evidence suggests that the
sequence of bifureations eg. at A = 0.2 [Parlitz &
Lauterborn. 1985] or A = 0.3 [Hohler, 1993] is infi-
nite: the positions of the maxima of the saddle-node
and flip (pitchfork) bifurcation curves appear to be
equidistant in the variable T'V? (see also [Sato ef al..
1983] for an early attempt to explain this regularity,
quite different from the present one).

The question arises whether an analysis of
Eq. (1) can explain these phenomena from first
principles. Since the complexity of the diagrams
mereases with decreasing damping A. it is tempt-
Ing to start such an attempt from the region of high
A where the solution of (1) is unique and give an
explanation for the appearance of bifurcations as
the damping becomes smaller. To the knowledge of
the anthor. there exist alimost no published deserip-
tions of the domain of uniqueness of the solutions
of (1), with the exception of the result of Loud
[1955] who shows that, if an harmonic term +ky is
present in (1), then (1) has a unique periodic solu-
tion at every fixed I', provided A is large enough
(essentially A > const x I'); it seems. however, that
the method is not readily extendable to the situa-
tion k = 0 of (1), Since the present work is con-
cerned with the regime of large forcing I'. 1 refer
to some unpublished internal reports. which show
the qualitative behavior of the unique periodie solu-
tions at high damping [Hohler & Stefanescu, 1987]
and establish their uniqueness [Stefanescu, 1989] for
large enough T' in a domain above a line A(T7) for
which:

. Inl’
lim

— = (). (3)
| e ﬁl{Iﬁ} )

:

In a subsequent imternal report [Stefanescu, 1990]
it was shown that uniqueness is lost as the

‘incard map is in fact a flip

“The asymplollo expansiens for the selutions of (1) EIved 1 the prapers |>_\' [i_\'ull—.“ﬂulll] aprpenl also in the present wi rk (Secs. 5

and 6), although derived in a dilferent manner.
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damping traverses a line A ~ InI and that a
sequence of bifurcations alternately of saddle-node
and pitchfork type develops for lower A (if T is
large enough). This result was based on a controlled
approximation by means of averaging methods of
the (half-period) Poincaré map provided by the
Duffing equation (1). The main conclusion was that
asyiptotically the Poincaré map is well represented
by a circle map:

\ = Feos(x +X) (4)

with 4. % depending on I' and A. The bifurcation
structure of (4) is then easy to obtain. This report
remained unpublished at that time. Its results were
summarized by the present author in an Appendix
to the work of Héhler [1993]. The present work is
essentially a repetition of the contents of this report,
including the correction of some calculational mis-
takes.® a more careful development of the argn-
ments and the addition of some drawings.

It is one of the results of this paper (and of
[Stefanescu, 1990]) that the “tips” of the saddle-
node and flip bifurcations. which reach up to the
highest values of A at fixed T'. lie asyvmptotically
along a line (cf. Eq. (252) below):

1
A(l)= —InT" — i Innl + - (5)

-."I Dl
These maxima are predicted to be asymptotically
equidistant in the variable T'V? with a spacing given
in leading order by (cf. Eq. (254) and Fig. 13}:

corl/ay  l/3 1/3 0 1/3 1/3
0 \ ]‘— = ]'— Jl"li.l - ]'—,“.\';\" £ - ]'—,“.";\" Ji.l—I—J - r]"'li.’
~ 1.403 ~ — m ‘ (G)

V3 / o Jsin |Vt
J—m/2

The problem of the deseription of the Poinecaré
map of (1) at large I was taken up again a little
later by Eilenberger and Sehmide [1992], Schmidt
and Eilenberger [1998]. These authors also derived
the circle map (4) as a limit of the Poincaré map
using. however. a different approximation scheme.
Since these are the only papers which treat (1) in
a spirit related to that of the present work — with
similar conclusions — 1 shall sketeh in the last sec-
tion a comparison of the two approaches.

“Without consequences for the conclusion.

We introduce next the notation used through-
out this work. We change in (1) variables to:

7 P A i 1 A
v A R v S s
{T}
so that it becomes:
=¥+ 2ud + a° = sint (3)

and I' — oo means = — 0. Le. the coefficient of
the second derivative x-’zmia‘hw The problem of dis-
cussing solutions of (8) for small = is a matter of
singular gwisx.fbr:.i.-f_u. H;m_uy. as expounded i the
books by O'Malley [1974] or Smith [1985]. The
question is well known (for linear equations) in the
semiclassical treatment of quantum mechanics
the (J)WKDB method. Equation (8) is the form of
Duffing’s equation used throughout this paper.

If one changes the time unit further to ¢ =
t/\/z. (8) becomes:
d*r dr PPN J A
E + 2r E R — =sin(yst), r= ? /s

iy
[ 3] )

This is the limit of extremely slowly varving fore-
ing at small damping if A/TY? vanishes as T’ — ~
and is an invitation to apply the adiabatic theo-
rem of elassical mechanies [Landau & Lifshitz, 1960;
Arnold, 1978]. Equation (9} is the starting point
of the approximations to the Poincaré map of (1)
developed by Eilenberger and Schnide [1992].

We give next a ssunmary of the behavior of (8)
at high damping; the unique solutions that are
obtained are qualitatively different depending on
the relative magnitude of A and T {or of p and

). Assume A = A(T) is a monotonically increasing
funetion of T, for I' — ~c (large I').

If, as T — oc, jt = A/T?® = g > 0, we change

variables in (8) to:

v=jpx, E= ; f= ”—l{ (10)
and obtain:
2% 424 472 = sint. (11)
As e — 0, (11) reduces to:
2% + 7zt = sint. (12)
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[t is easy to show that, it i is bounded, (12)
admits a unique periodic solution which can be
improved by iteration of (11) to a periodic solu-
tion zp(t) of the latter; further, »p(f) is unique [Ste-
fanesen. 1989].

However, if 1 — 0 as
this limit to:

z— 0. Eq. (8) reduces in

r’ =sint

[ 133
with the solution:

xoo(t) = (sint)'/>. (14)
Corrections to xg(f) cannot be obtained by iter-
ell’ihg’ (&), since the derivatives of ,?'(1(_1{1‘,' at £ =0
are not finite. We expect nevertheless (14) to he
a goad approximation to periodic solutions of (8)
away from ¢ = 0. The departures of the solutions
of (&) from (14) near ¢ = 0 are obtained hv a
houndary layer analysis (the book by Bender and
Orszag [1978] contains an excellent introduetion to
this subjeet treated otherwise in detail in the
reference mamals on singular perturbation theory
[O'Malley. 1974: Smith. 1985]). Let

f=gi¥ly gty (15)

so that (8) becomes:

s tf2;,r dn g
s Bt ;
e Y T
N : '”.fs.-'i
= r”—-'n':a H]‘.].l':‘ |l_rllf:{_.--.'- .:I S — U f_.'i _|_ ‘i I: l(.':'

To zeroth order in p%°, we ave interested in that
solution of (16) which behaves like 713 as 7 — ~.
so that it matehes roo(t). It -_-'..-*";rx":'r’ — 0
(isa, AJTWA >0 ). this selution is obtained hy
nmproving iteratively the solution oft

— ) as ¢

i')”rj

- dr

=T (17)
with the same boundary condition. A “conjunc-
tion” of this solution inside the boundary laver
with (14} ontside it can be improved to a unigue
(odd-jperiodic solution of (8) ([Stefaneseu, 1989
Héhler & Stefaneseu. 1987]: see Sec. 3 of this work
for related procedures).

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

If. however, A/TY/* — (0 as £ — 0. the appro-
priate boundary laver quantities are:

i e ( A
L= ._"J’ T = _'l .fal' Y = ; =] | = [ lt\)
! :__".’."I"\ -[l ] \ /
i teris of which (8) beconies:
L
d=n dn % 5 -
=+ 29— 4" =V sin(e™ " T)
dr? tdr /
e . Ly (19)
5]

) 1/3

As ¢ — 0, the solutions of (19} obeving (1) ~ 7
as T — —oc are oscillatory as 7 — +o¢ and are
damped in a “time” 72 1/9 — .

We distinguish thus three regimes of (8) for
large T: (1) p > pg > 0 as ¢ — 0; (i) p < pp
and :_.r",u”'-’”’ < const as £ — 0 (1) p — 0, v =
j/e?'® < qp as £ — 0. Situations (i), (ii) lead to
nnique periedie solutions of (8) for large T for a
proof see the nternal report [Stefanescu, 1989]. The
fransition to nommiqueness ocenrs in region (iii) (cf.
Eqs. (3) and (5)). We shall thus assume thronghout

the present work that:

and nse the notation of (18). In view of (5). we find
it convenient to use instead of 1 the variable:

- (1) ~2InD
:71].] —_

so that bifurcations ocour when v = Q1) as = — (.
The paper is organized as follows: in Sec. 2,
some general preparatory statements are estab-
lished concerning the boundedness of the solutions
of (8) and the manner in which they approach each
other in time. Section 3 introduees the mner and
outer expansions associated to (8): these are com-
bined and tmproved to two special. nonoscillatory
solutions X (#). Xp(t) of (8). defined for ¢+ < 0(L).
t > 0(R) in turn. These solutions® are taken as ref-
erences for ¢ < 0. ¢ > 0 in mm and the Poinecaré
map P is defined in terms of the differences:
vr(t) = x(t) — Xp(t), t<0;
(22)

vp(t)=ax(t) — Xglt)., > 0.

'J_Hw_\' are called creepimg solutions by Hilenberger and Schmidt [1992],

1330006-4

21.03.2013 19:32



THE ONSET OF BIFURCATIONS IN THE FORCED DUFFING EQU...

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

The Onset of Bifurcations in the Forced Duffing Fauation with Damping

In Sec. 4 a precise bound is derived on the region
Dy =) of phase space where invariant sets of the map
P may exist. Sections 5 and 6 establish controlled
approximations for quarter period Poincaré maps
Py, P relating sections at t = —7 /2 and t = 0 (Pp)
and t =0 and t = 7/2 (Pg) in turn. In Sec. T the
complete (half-period) Poincaréd map Pz, 1) is writ-
ten down and its limiting form for ¢ — 0. the circle
map 11 (4), is established. Finally Sec. 8 discusses
the extent to which bifurcation properties of the cir-
cle map can be transferred to those of the complete
mapping P(z, 1) for small, nonvanishing =. In par-
ticular. the statements of the Abstract concerning
the asymptotic distribution of the bifurcation lines
are derived. The paper is closed with some general
remarks and a short comparison with related papers

of Eilenberger and Schmidt [1992, 1998].
|
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where A is a constant, which will be chosen appro-
priately in the following. The function L{p, »,t) is
continnous and piecewise differentiable. In oppo-
sition to the functions considered in [Sansone &
Conti, 1964] the function L in (24} is time
dependent, however in a “mild” manner: it is

2. General Preparation

2.1. Eventual boundedness

of motions

Lemma 2.1. There exists a rectangle:

. lr B .
R |x(t)] < By, % < —i (23)
{ VE

so that all solution paths (x(t), &(t)) of (8) eventu-
ally get inside it. The constants By, By are indepen-
dent of e, puif poand ¢/ ave sufficiently small.

Proof.  The argument is inspired by and similar to
the one due to Yoshizawa [1953¢, 1953b. 1953a] and
presented i the book by Sansone and Conti [1964].
We consider the Lvapunov-type function L{p,x.t)
given bv: (p = dx/dt)

Lip.xt)y=E(p, o t)+ Dip x) (24)
2 !

. : ) x . -

E(p.x.t) = L + T rsint (25)

. e\ AN
if p > max (—) . (—)
T I
F o\ /2
< (—) o= A
T

if |p

F N 172
ifp<— (—) o= A
I
(26
F A\ 12 )
ifp<— (;_r) el < A
o ' |:| 1/2
iftp<— (— . —A
T
. || Ve
it [p| < (— o< —A
I

2m-periodic. The choice of D{p, x) is a modification
of the one used by Reuter [1951], also presented®
in [Sansone & Conti, 1964, p. 376, Chapter VII,
Section 3]. Differentiation of (24) and use of the
Duffing equation (8) establishes that:

“Use of the function offered for a more general situation by Reuter turns out to be appropriate only if the damping A increases

faster than V7,
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can replace the rectangle Ry with a larger one 1.

dt or so that both Ly, L, are monotonically inereasing
LoD . nnr.sido Ry along anv rav in the (@, p) plane. One
e ?Tp{?”}} 14 a7 —gin t) verifies that e.g. the rectangle

< =0 <0, ifz.pe CRH;. Ry {l;:- < A. |j_3 < é} (30)

o 1 _ v
Ro=<|z| < A.|p| < (__1) (27) flllfﬂl:‘ ﬂlis condition. The '\’ill‘.i(lllﬁ (1"»11151111.?‘ .uf rhw‘
fi (r.\/ep) plane that appear in the definition of
it, eg. A < 2 and p, 2 are appropriately small ARty 1. (26] wre shown.in Jig: 1o Gltp St

(depending on A, eg. for A =2, p < 1/2, e/p <

/2). The quantity 4 is independent of (z,p) in
CHRy. As a consequence of (27). for any trajectory
(a(t), p(t)) which starts at t = 1y in CRy and for
any fnite interval Af.

Lix(t + At). p{t + At). t + At) — Lix(t). p(t).t)
< const < 0 (28)

as long as the trajectory stays in CHy.
For any (x,y) outside Ry we define two fune-
tions. related to (24'!

2 A
Las(a.p) = 5+ + D(a.p) + x|

I:Qi]l

5 i
§ . /o o A
Lo (i pl=&—f— D, P = |.¢.’|
s 2 4
which both increase indefinitely as |x|. |p| tend
to oo along any direction in the (2, p) plane. uni-
formly with respect to the direction. Further., we

uation £/p = 1/2, = = 1/4. The =dependence
— 0 at constant =/ with this
choice of variables, since the changes of D(r, /zp)
between the various domains are proportional to
V2. The rectangle Ry outside which dL/dt < 0 is
shown with a dotted line. the “mmecreased” rectangle
Ry . Eq. (30) with a continuous line, Let now

becomes weaker as ¢

Lim = max  Ly(x.p) (31)

(o p e d iy

where dRy denotes the boundary of ). By our
choice of R). for a trajectory starting in Cly. as
long as the corresponding function L{x(t). p(t). 1)
assumes values strictly larger than Ly,,. it is cer-
tain not to leave CHy. Indeed. by {31) erossing
dit requires L < Ly,. But in CR,. the value
L{x(t)., p(t).t) decreases monotonically with time
by (28) so that. for any value Ly = Ly, there exists
a time ¢ at which L{x(t). p(t).t) = L.

Consider now such a value L) and the closed
region R in the (2. p) plane delimited by the closed

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com
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Fig. 1. The rectangles Hn. Ky used for D{p.2) and the eurves Cliy,. Con .
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aarve:

G, idpilipyi=.1. (32)
It contains the rectangle Ry strictly in its interior.
According to the above, all trajectories starting in
CR, reach at some time # the region R since their
corresponding  L-funetion achieves the value L.
Such a trajectory cammot leave the domain R by
traversing (or turning back from) the cmve C,,
because outside C,,. L > Ly (x.p) > L) and
this would contradiet (28). Thus the trajectory
is “trapped” in R. We obtain the statement of
Lemma 2.1 by choosing R a rectangle con-
taining (,, in its interior: one verifies that this
is 50 if By ~ 4. By, =~ 8 This ends the proof
of Lemnma 2.1.

The eurves C'yy,. corresponding to Ly {x.p) =
L]im- E‘l ( 51;‘ C‘m of 'L 32 :'
in Fig. 1

{enclosing (', ) are shown

2.2. The approach to some special

solutions

The following describes the manner in which a
solution @(f) of (8). trapped inside the rectangle
R of Lemma 2.1. approaches a solution ag(t) also
contained in R and subjected to the following
supplementary

Condition 2.1. There independent
of 2. so that, for allt in some interval [ty t2] with
T (mod )

erist a.b > 0
0 =< f-] < f'z [

rolt. =) (t,€)
| ) / :fl’ !

(IH] ‘

Solutions of (8) contained i the rectangle B and
obeving this condition will be shown te exist in
See. 3. For any other 2(t) staving in R for ¢ > {4 we
may state:

Lemma 2.2. Assume ;f_.r"-;'l-';z = A3 <« Ay and
s/ =1/A — 0 as ¢ — 0. Then, for = sufficiently
small, there exist constants K. C. independent of =.
sa that. for any selution confined fo the rectangle R
of (23) and for t €t).t2]:
dr h“.'r‘".H
ff dt

(34)

max ||a(t) — xo(t)]. ¢ L

= — (it —ta e
< j’,i{., Clu(t—tq ) /¢

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061
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If.f.fqr LM‘ ( e l dll(]
ul(t) = (a(t) — xolt))e nit=t1)/e (35)
It verifies:
2
d=u du
e 420l — ') —
dt? Dt
0o PEC*—20)
+u |3w(t)? + ————1
o, it e
+ Surg(t)e Cult—t1);
4 ude 2Onl—)/E — (36)

Consider the Lvapunov function:

du 4 2 . e
Ly = 3 T +2 ;r( ) +=Glut) (37)

withC=1-C

and

il
Glu.t) = / W Flu' tydd (38}
Jo

where «F({u.t) denotes the last three terms of
the Lhis, of (36). The forms F{u.t), Glu.t) are

positive 1{ finite for ¢ € [t).t2] if, eg. C <
min(1/2.a%/(4A2)). Using (36) we get:
IL, o e OG
: L= 2l [ WPF(u.t) — :
dt "JI“( it
= —2uCu?H (u.t). (39)

One verifies that, with the choice of € abave. if
s/p = 1/A is sufficiently small, H{u.t) (of (39))
is positive definite for ¢ € [ty.#2]. Thas the solu-
tion paths (v, du/dt) stay contained in the bounded
domains defined at every t € [t.12] by:

Ly (t) < Lu(ty). (40)
But L,(t,) = Oz}, since (u,du/dt) are contained
in the rectangle R of Lemma 2.1 and p//z < Aq.
It follows from (40) and (37) that Glu.t) = O(1)
for t € [t1.t2] and since G(u.t) = w? Fi(u.t) with
Fi(u.t) strictly positive definite, it follows that
u(t) = Of1) tnl t e [f].f'g]. Further. since sdu/dt +
2pCu = = 0(c'/?), .uld Jt/+/2 is bounded. we con-
dude that du/dt = O(c7'/2) for t € [t1.12]. Retrm-
g now to (35) we obtain (using again the bound
on i/ /= for the evaluation of the time derivatives)
the statement of the lenmmna.

The bound p/ /= < Ag delimits in the I' = A
plane aregion where the damping may still be quite
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large to ensure at small =, imiqueness of the periodie
solution of (8). In this paper the concern is the
region of relatively small damping (A 2~ constInT7)
where uniqueness gets lost. The demain of 1;'11‘5_31‘1‘
damping may be treated completely, as is shown in
the nnpublished report [Stefaneseu, 1989].

3. Inner and Outer Expansions.
Reference Solutions

3.1. Left-hand reference solution
3.1.1. The outer expansion

For small £ and p and for t away from nw, we expect
to obtain an approximate solution a(t) of

e 4 2ui + &° = sint {(41)

by simply starting with:
£ { e v1/3 (AN
Iaplt) = (sinf) (42)

and determining step by step with the help of (41)
the coefficients (1) of an expansion:

.E.'Hl'lf_‘ll = Z;rrﬁ._j.r'lﬂ.; |:f_:|. { 3||
k.l

Equating to zero the coeficients of the various
powers of y1 and ¢ we obtain successively:

D 5
. 29 ) L0 o
Tp(t) = —- 5 To1(t) = — e (44)
3z x5,
and so on. so that we may state. in general:
Lemma 3.1. With the definition in (43):
PRy [3—=5k/3—=8l/; 2 . .
-3',1.-:'"1'_,' — fl —5k/3—81/3 E "f,n'.-.l'qr l l‘-l:E",l
q

where the sum s uniformly and absolutely conver-
gent fort in |—m + 0.7 — |, for any o > 0.

The proof is done by induetion: the set of coefhi-
cients {rpo(t)} and {xe(t)} form “closed” groups
allowing the recursive determination of () o
termis of zpo(f) with & < & and xg(f) in terms
of xgo with I < [. The coefficient xy,(t) may be
determined in terms of a0 with " < & 0I" <1 and
F < k.l < 1. Thus. we may determine successively
the sets {wxy;}. {&y}. ete. From (44). we see that,

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

2.g.

To(t) =

2 i t Ha
__f.—]_..".{(_”H{, . ]
9 sint

o 22+ gn?t /¢ \7°
rpi(t) = = E ; ‘
0L T 55T a3 st f

The ratio t/sint is a holomorphic. even and zero-
free function of ¢ in a disk of radius 7 — 7 around
the origin: the same is true of (t/sint)"* which
justifies the statement about the convergence of
the series in (45) i this situation. The same is
true for wq (1) and is then transmitted recursively
to all other coefficients. This ends the justification
of Lemma 3.1.

The coefficients ay;, in (45) may be obtained

step by step divectly as follows: let o = ;f}ff.r";"{_

2 /9

4= =/t and denote by:

Pllle =i+ 2'1'4‘! -+ ,!‘:{. Il—l(r‘l

\

Then one verifies that Eq. (41) means (vgl. (45)):

D443 Z U O kgly2q

k.i.q
: $2a+1
: k2941 ¢ § € [
P q | &€ )

where by, arve combinations of agepe with &' < k.
" < 1 and ¢ < ¢. but with only one term con-
taining ay, namely .'Su.ﬁc_,uugl.;q. This equation allows
the recinrent determination of agy, by equating the
coefficients of o #2411 on hoth sides. starting with
agoy = 1. The coefficients with ¢ = 0 (or &k = 0
or [ = 0) build a “closed” group: the apn mayv be
determined sueccessively from aggg. Then the cal-
culation of agy, for ¢ > 0 requires a;go0 with at
least one strict inequality in the set (& < k0" < 1.
q <q).

An obvious question is: to what extent do we
satisfy  (41) if we restrict ourselves to a (I, L)
truncation of (43)7 From (47) we see that terms
containing by, with & > K or [ > L are. in gen-
eral. nonvanishing. so that the action of D pro-
duces terms of O(ta™ 1 ¢ty e, (')u,'f;r':“"’-“'“]:'...f"
(RF1)/3 1-.;'13—+13"{,*';""33-*'3'-"""_;._ This shows that a
truncation of (43) is approximately a solution only
for ¢t away from zero. Le. outside the boundary laver.
which justifies the label outer erpansion.
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21.03.2013 19:32



THE ONSET OF BIFURCATIONS IN THE FORCED DUFFING EQU...

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com
by 91.45.190.167 on 03/21/13. For personal use only.

9 von 64

The Onset of

3.1.2. Theinner expansion

The substitutions: @ = /%y, t = ¢¥%1 change
(41) to:
% , oy SR AT .
In2 L2 ;; +n* = Psin(e¥Pr) (48
{ .fJf g !’

where v = /%%, It is natural to look for a solu-

tion of f—]:(_ ) as an inner erpansion’ in terms of the

parameter =1
,i’}l'_'l = ,rJil.l__:l -|—-_-“ ,r“f_'l E Ij'zlr_'l
(49)
where the 1,(7) are in tim solutions behaving like
20t 8 ag 7 — —oo of the differential equations:
2
d4 0 o il :
”r_i —I-_)" I,fj— + ',fJf[]I:'.l_:I'{ = [ Bla)
! oy
2 . _q
d=m, iy o 7
—— 4+ 27—+ 3T T = —— (50b)
dr2 “dr K AT G : -
d’ny . dip Y 5
Ty T 27—+ 3m(7) ()
L7 o7
f_.hi
. B " / \
+ 3T i) = Bk etc. (50c¢)

r_\

Because we wish the wllmuu n(r) to approach at
large —7 the function (sint)"/?/cY%, it is natural
to choose those solutions of lJ[]ell If‘)lﬂ')',l. ete. which
behave like 729713 as —7 — oo, corresponding to
the terms (—1)92%9/472aH1/3 /(24 + 1)1 of the Taylor
expansion. Concerning the expansion (49) it is easy
to show:

Lemma 3.2. The solutions i, appearing in Eq. (49)
erist and are w.a"gru-a’.;{; determaned by the require-
ment 1, ~ r2atl/3 g5 7 — —o0. Their asymptotic

erpansion for T — —oo 18 given by:

PR _) o —hk 38/
ff.,_lr"‘_n’_.' s q+1/3 E “,l'.'.l'r_qu..ll‘l' e f3—81 {.
kel

qg=10,1,2,... (1)
with the same ag, as i (45).

As before. one verifies by induetion that (51) with
coefficients ay, is a consistent asymptotic approxi-
mation for the s nlnrinuh' Eqs. (50a). (50b). ete. obey-
ing ny(7) ~ r2atl/3 as 7 — —oc. The coefficients
iy, arve determined by substituting the asymptotic

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

Wifurcations an the Foreed Duffing Fouation weth Damping

series (51) for each 7,(7) in Eq. (49) and requiring
rhnr (48) be verified to all orders in 7 for all = and
7. Denoting t' = . o =473, =788 and
by D the action of the right-hand side ut Ee. (48)

on funetions (7). one verifies:

dg /4~ —5k/3—81/342q

'r.‘-['.I.'fr_lr ﬁ 2 T

5 I
— E ,I_aH} ‘ t,’r : |r$h|

bl

e ]. Vi f.? \|2r1r

=T E — (52)
(2 4+ 1)!

with f:;,.;,f analogonus to by, of Eq. (47). Equation (52)
allows a recurrent determination of a, starting
from agen = 1. From
from (52) dayy, are identical to the corresponding
ones in (47) for ag, if we replace t' — t, o' — a.
3" — 3. This shows that. indeed. ay, = -

We notice that the caleulation of the asvinp-
totic behavior of 1. ¢ > 0 requires knowledge of
the behaviors of 5o for ¢ < ¢. since 7y oceurs
in the equation for 5, (vel. Eq. (50c)). The rela-
tion between outer and 111111‘1 v\pmmu s 18 appar-
ent if we substitute 7 =1z ,n=ac"/8 in (45)
one obtains the sum over g of the series (51). i.u,
the asvmptotic behavior (at large —7) of the inner
expansion is the same as the low ¢ behavior of the
Olter exXpansion.

We now show that. indeed. the requirement
concerning the asvinptotie behavior selects nnique
solutions of (50a)(50¢). We shall show direetly that
unique solutions exist admitting (51) as asymp-
totic expansion. from which the previous statement
will follow. Using the method of the variation of
paranieters we set up an integral equation for the
difference

the equations determined

)

ug(T) = ng(T) —ny( K, L) (53)
s (K.L) - . - e
where 1, is the truneation of (51) after (K. L)
terms. For ¢ = 0 the equation reads:

o\ =y P AN YR WO (L0
Up(T) = e (o (T)ve(T) — (7)o (T ))
J =

"
¥ ff(r ) — J:,r,',h L) 'TJ‘,I“ — 7’ ]l"]ltfr"
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where

;fguffh'.i_"u (K. i
HI.'_:I:— “_ + 2- - +:.'-_I‘-—-':i__
::'rTZ I7 ! '
— A K A8 .()Lf,\f_—z ] f_—’; '.\J |'\")"j|

and
— 1
3V3 4

- o i .
MolTe e ———— S T (506
o 214 |r||.-'fj 08 il

are two  linearly  independent solutions of the
equation:

The approximation indicated in Eq. (56) is related
to the WKB approximation and is discussed in
a related context in Appendix C. One ean show
now by well-known methods that Eq. (54) admits
a unique solution in a space of bounded contimi-
ons funetions on {(—oc. —a). a > 0 with the norm
sup |72 /3Ly (1|, This solution is obtained by
iteration of (54) which also sets a bound on the error
made by truncating (51) at the (K. L) step: it igf
QA 73R/B=8L/3=1) "Since the order of magnitude
of the error is smaller than the last term inclhided.
this shows that the expansion (51) is indeed asymp-
totic; for . L = (0 we obtain the statement of
Lennma 3.2 for ¢ = 0.

For ¢ > 0. Eqs. (50a). (50b) and their analognes
are linear and so are the corresponding integral
equations (54): the selutions are given simply hy
the mtegral over (correspondingly modified) terms
like H{T) of (55): these terms contain solutions 7,0
with ¢ < g. The error of trunecation after step
(. L) is now C'{q_;u.-’z“i"l_»’f"--"":"_":"‘-’":"j_h-. with C'(q)

a (g-dependent) constant.

3.1.3. The complete left-hand reference
solution

Although it is intuitively dear that Eqs. (45)
and (49) (using the expansion (51)) are expansions
of the same solution of Eq. (41). it is not frue that
truncations at inereasing I, L fulfill (41) increas-
ingly well on the whole interval [—x /2. 0]. Following
methods related to those of O'Malley [1974, Chap-
ter IV] and Smith [1985, Chapter VI]. we show how

5

Il =0, then I must be set equal 1o 0.

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

the two expansions have to be combined to vield a
uniform approximation of the solution on [—x/2.0].
We denote by:

D) = E ;rf"._-'f,rgl.;(f}_

<K I<L
|:r).;-:|
Q) _ _1/8 _3q/4 f .
€ =c E E :;,fi T)
q=0Q

L.e. the (K, L)-. Q-truncations of the suns in (45).
(49) and take a mmmber d. 0 < d < 3/8. With these
we set up a (K. L.()-approximant to a solution
of (41):

T (t) = %ot €D ) 4 xalt, €2 oy (), (58)

\ e . 2 . i
where yoft.29) is of class €2, = 0 for t > —ac?

and = 1 on [-7/2. —b=?]. 0 < a < b; firther for
—m/2 <t <0,

[

xilt, -_-'“r} — N Xolt, -_-'“r_‘,l.
The fumetion w,(t) is not a solution of (41) bur is
uniformly close for small g and ¢ to such a solu-

tion on —7w/2 < t < . Indeed. substitution of
2B of (54) in (41) leaves terms of O((g/t3/3)L+1 4
(/I BN i compensated: .r.':'f‘““ verifies (41) up
to terms of O(e3Q@F1N/A+3/8-(2Q+3)). thus, using
the notation of (46). for —7/2 <
—be? <t < 01in turn:

D E)) — sint|

%]

t <« —as? and

o ()I: ____[ L41)(1=8d/3) + ;r[]'l\_"'] )1 =5d/3) .,'I. (59)

(@) - (2043
Dl:_.:." ") — sin f| = () gd2Q+3)y,

!

On the interval (b, —a=?) the functions ;. \o
have derivatives of O(=~7) and second derivatives
of O(=724), These are multiplied by the difference
of the (truncated) asvmptotic expansions of ().
x,(t) in this interval of £. As we have seen, the coef-
ficients az, of these expansions are identical. The
ditference may then be estimated to be:

;'llf(.;). KoLt ) = |{;r',, — 0y ,'H,"T",I|

- E ;”‘.hffliq-i-l _.-"i{:.ll\'”.l'

>0 k<K I<L

3q/ f P,
+ : - g, 1+1 \“.’]r" )
q={

I/
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where w,(7) are the “rest” functions introduced
in (53). Letting 7 = #/2%® this expression is evalu-
ated at t = ¢ to be:

A(Q.K, L,&%

3 (.{ { I\r _[, e [Ztn.}‘i'] [3)d

| C(Q)L1=3d/3) (), K =513y _1/2-d
where C(K, L).C'(()) are constants which depend
on the truncation points. but not on =, Similar esti-
mates are valid for the first and second derivatives
of the difference A(Q.K.L.t = £%). Clearly. it is
possible to choose Q. K. L such that even Asz=27
vanishes as ¢ — 0 (50 as to take into account the
derivatives of the functions y;. \, in (58)) so that
we may state, using the notation of (46):

Lemma 3.3. The approvimant x, of (58) satisfies:

sup  |D{w,) — sint| < (K, L. Q)e®

—TZ <t}

where P =

constants.

win( K, L. Q) and ecq. ¢y are positive

With this we can now show the existence of a solu-
tion Xy (t) of (41) which “interpolates™ between the
outer expansion (43) and the inmer expansion (49):
it is approximated by 2, () uniformly on —7/2 <
< 0. We write:

XL(t) = xalt) +r(t)

r,(—m/2). Then r(t) is the solution of the integral
equation:

1 P _ _
rit) = - / exp (—E( st j.)
E.J—n/l2 £ :

and require X (—7/2) = x,(—7/2). Xp(—7/2) =

respect to 7 is then O(1) at t = 0 but O(=—1/19)

at t = —7 /2. With this. using the bounds (60) one
shows in a well-known manner that, if the integer [”
is sufficiently large. Eq. (61) admits a unique solu-
tion of magnitude sup__jo ;¢ [r(t)]| < g1,
which can be obtained by iteration. We can thus
conclude this section by:

Theorem 3.1. FEquation (41) admits o solu-
fron Np(t: e I L.Q) wuniformly approvimated to
Oy on —1/2 <t <0 by xa(t). Fq. (58) and
which obeys: Xp(—m/2) = x (—m/2), dXp/dt x

(—m/2) = dx,/dt{—n/2).

The estimates above are very rongh and distort the
nunerical simplicity of the solution X, @ the depen-
dence on I, L. () is munerically irrelevant: for all
practical purposes

Xp(t)= (sint)!/3, —

m

2
18 i

—iE Hoot 7 ). =B

(with mmich freedom in the choice of 0 < d <
3/8). The fact that the proof relies on the pos-
sibility to choose the integer P large originates
from its ienoring the “destructive” action of the
rapidly oseillating funetions vy (1), which is appar-
ent in their “WKB” form. It is this verv weak
dependence on the cutoll parameters (. L, ()) (and
thus on £, y) which justifies ealling Xy () the (left
hand) reference solution. Its behavior near + = 0
s shown in Fig. 2. The fioure is virtuallv inde-
pendent of =, g if time and magnitude are sealed
appropriately.

34 o
x (v (" Yoa(t) — vy (oo () (D — sint) () (1) i —
» g— 2] ///
+ 3z, + )t (61) o
@ T —.l.,’.
where oy o(t) exp(—p/e)(t + 7/2) are solutions of
the variational equation around r,(t) and D is the
Duffing operator (46). We need here only rough = L L L = #
o - . - ? tau
bounds on these solutions. For + < —2 (for 1/
some 0 < d < 3/8) these solutions are well approxi-
mated by “WKB formulae™ and may be chosen such -~ 2]
that they have a limit as = — 0 (see Sec. 5.3 and <3
Appendix C) for ¢ = O(=*?). It turns out that, if 2o a]
the solutions are chosen to bhe Q1) at £ = 0. then
they are Oz “"_‘Iu at t = —m /2. The derivative with Fig. 2. The solutions 5y g(7) =¢ Y5X, p(t) near 7 = 0.
1330006-11
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3.2. Right-hand reference solution

3.2.1. Choice of the inner expansion

We turn now to the interval 0 < ¢ < 7/2. Ohvionsly
the outer expansion (43) is formally the same, with
the same coefficients a;y,. Changing to the “inner”
variables 7. 1 we consider again an expansion in
terms of ¢4 similar to (49) and expect the asymp-
totic form of its varions terms to reproduce the
coefficients ayy,. appropriately rearranged. As will
be apparent. the result is not the continnation to
7 = 0 of (49). There appears now an ambiguity
in the definition of (49): the boundary condition
that the solutions 1,(7) of (50a), (50b). ete. should
behave like 72¢F13 as 7 — oo does not select
a unique solution but is now obeyed by all solu-
fions as a consequence of the damping term. The
damping time is 1/ ~ 1/(e%%In1/z). which is
shorter than the T-duration of ()( l..f"-_':{".x_‘,l of a (uar-
ter period. Equations (50a). (50bj. ete. however
admit solntions with almost no oscillations even at
tinnes 7 < 1/4: we write to this end. in (50a) (i.c.
g = ). for some integer r and appending an index
R (for right-hand side):

.f'

r(T) = E nokr(T)7" + 7 o(r)
k=0
= ”:_]_}T:: + up(7) (G3)

where 1jgep(7) (= 0.1....) are, in turn, the solu-

tions behaving like 7V/37°%/3 a5 7 — oo of:
2
*noor 3 (G
;_J-_} o =T (G4a)
A7
5
“Lf,ft.ljh’ g 2 N ..)ff'a‘,r.:':[:jf (64b)
7{{_2 —I— -Jffc;.;;,r',"ffr.,\lff = __—f— we e . | ¥
] o7
2
Friwr |, 0
”,T + -54‘}(1.;.15-4‘}(12H
Sdoir 5 il
—2 — 3N00RM 1 - - - - (Gde)

dr

These equations are obtained by equating the coefs
ficients of various powers of ~ after substituting
(63) in (50a). Now the condition on the behavior
for 7 — oo selects a unique solution because the
damping term is absent.” It is easy to verify that
the algoritlim to obtain iteratively the asymptotic

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

expansion of the solutions e leads indeed to:

1/3—=5k/3-8l/3
Hojege 7= E QT :

l

(G5)

with ago of (45). The function wg(7) is the solution
of O(~" 11 ) of the equation:

2
”f_”[J F Ur-'!'.fr_"l v (ri.2 s (1) 9 3
2 4 2y 43008 Y 2o + 3B + b
H?.'" h'?.'
= (')Ilr,,-:r—t—J .f_l-l{—."alr'i-] 'I'I:l.), ( (J(J:I
Such a solution may be obtained by iteration.

repeating the argument of (54).
The equations for

oy . £y Liz Z oy
Nair(T) = Ngor(T) + M r(T) + 7V N2r(T) +- -
(G7)
are linear and similar to (64b), {64¢). deduced from
(50b). (60e) expanding in powers of 7 and setting
appropriate boundary conditions at 7 — oc.

3.2.2. T he complete right-hand reference
solution

We can now repeat the argument of Sec. 3.1 and
obtain a solution for 0 < f < 7/2 from a superposi-
tion like I'B\‘JI

(4 — g iy QUL gy
,:'f“r‘,ll_f_ll = \HHI\T._‘-J}.:T'I';R G II,Ifll

oo i PR g Friiy
+xir(t,e) e (t) (68)
where we have now appended an index R to the
VArIOIS Terms.

Q) _1/8 () _3q/4 E : (5 /.
':-'f'r' = ”UHI:'I JI-l—'_' ! ILJIH \T)
I =<g=q
(69}

4 ()
E}lll x,rm,?
Repeating the steps following Eq. (59) we state
directly:

are the smms (67) restricted to K terms.

Lemma 3.4. The approvimant r,p(t) of (68) sai-

isfies:

| 70 )

sup  |D{ax, R) —sint| = O eREY
/2

0<t

with P = min(K, L.Q)) and ep s an (c-indepen-
dent) constant.

"We do not g;j\'e‘ Al i'.xpl'l:‘.il Prox [ ol this, because the paper o mtains many similar arguments.
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We would like now to repeat the procedure lead-
ing to the integral equation (61): there is. however,
a difficulty because a direct analogy to (61) would
l‘f\qllil‘(‘ all illl’f‘gl‘z'itiull backwards in time HFz'itTiIl,L’,'
at + = 7/2. The exponential term inereases in this
case Indefinitely as = — 0 and precludes our setting
bounds on »{1). We have to start the integration at

t = 0 and set:
Xr(t) = 2ar(t) +r(t), Xr(0) = a:r(0),

!LY;';- o Hr,!"_,]r'g s
()= - ({1,
dr dr
The values x,;2(0) are obrained from the solutions
of the equations for np. ¢ < Q. & < I (cf. (64a).
I":U—lE')",I. (6dec). ...

Xp(0)=e® 3" Sykyun(0) (72)

0<g<Q k<K

and similarly for dXgp/dr{0). We conclude this
section by stating in analogy to Theorem 3.1:

Theorem 3.2.  Fquation (41) admits a solu-
tion Xg(t:z: K, L, Q) uniformly approvimated to
OFEERYY on 0 <t < /2 by x.z(t). Eq. (68) and
which obeys: Xp(0) = r,pz(0). (Eq. (72)) dXg/
dt {l'l':u = dr,p/dt{0).

3.2.3. Thediscontinuity at ¢ =0

We evaluate now X, (0}, dX(0)/dr using (50). The
correction r(f) obtained from (61) may be made as
small as one wishes, by letting the cutofl integers
K. L.Q be large enough. Then it is true that:

X5 (0) =72 " SMp,(0) = o (0)  (73)
q=Q

where 7,(7) are the uniquely defined solutions
of (50a). (50b). (50c). These solutions mayv be
expanded in powers of 4. similarly to (63) (we

append from now on an index L for svmmetry ):

g T) = Mgl (1) = E *__-’l"'i',f,f,!,-;‘ (1) (74)
k<K

where 1. verify the same Eqs. (64a) (64c) with
a boundary condition (i.e. a preseribed asymptotic
behavior) at 7 — —nco instead of 7 — ~c. It ig casy®
to relate the solutions corresponding to these two

= . . ~ .
[nveoking the unigueness of the solutions.

houndary conditions. which interchange 7 and —7.
One verifies:

MooL(7) = —Noorl{ —7), o1 T) = Norpl—T7)

! |

No2r(T) = —Noer{ —T)- .- Mor(T) = —Nwor(—T)

(75)
so that:

A,I.‘J, () = _"J":Irk E '_'_:if'r"; L ,E,-”fﬂ‘l}‘ { '_}:I | i | — 1 | kit )

q.ke
=218 3" 2 (0) (76)
q.h=2p
anel
{[’.I' 3 /e Yo f l_"’f;fr o ot
A—=2(0) = 2:1/8 E e3a/A K HgkL (0. (77)
dt - : dr
i be=2p+1

Sinee noor(0) # 0. it follows that X (0) # Xg(0),
thus the two reference solutions are not the contin-
nation of each other. There is a jump of O(=1/%) at
t = 0 in going from one to the other. The deriva-
tives have a smaller jump of O(=!/%~). We call these
solutions “reference” solutions heeause the motions
which we study consist of small oscillations around
them. FEilenberger and Schmide call them ereep-
ing solutions: the left-hand solution Xy (f) is the
motion of a particle which stayvs at the bottomn of
the moving potential well V{x) = 2! /4 — asint for
all tines away from £ = 0; near £ = 0. the velocity
of the minimum of the well at x,,(t) = (sint)!/?
bhecomes unbounded and the particle cannot fol-
low it: for ¢ = 0 it will oscillate arovmd the min-
i with a larger amplitude (see Sec. 6.1). It
hehaves as if it had received a kick at t = 07
In order that the particle follow the mininnmm of
the potential for £ > 0 away from zero. it has to
start at ¢ = 0 from (Np(0). dXg/di(0)): this is
the right-hand creeping solution: it will stay near
the mininmm until ¢ ~ 37 /2. In Fig. 2 we show the
appearance of the reference solutions ng. ;. near
t =0 (qr =¥ Xgr 1)

3.3. The Poincare map

We define the time2r Poineard map with respect
to the reference solutions Xy (f). Xp(t) constructed

"However, there is no real “kick™ and in my view the model proposed Ty the authors with a discontinnons foree at ¢ = 0 is

not a correct description of the appearance ol the circle map for the Dufling equation.
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in the previous subsections. If we dhioose the same
cutoff parameters Iv. L in both. it is true that (to

% (-5) = -1(3)

order = ):
1IN T dXp /m
(rHL (_3) - ffJ‘H (E)

As already notieed (ef. Eq. (2)), if 2(f) is a solu-
tionn of Eq. (41). then —a(f — also a solu-
tion. Thus the solution starting at ¢ = 7/2 with
the valunes — X (—7w/2). —d X /dt(—m/2). is simply
— X (t —m). which we denote by X (t). This solu-
tion is a “reference” solution up to ¢t = 7 where it
is replaced by X () = —Xp(t — 7). We write. for
a solution x(f) of (41);

i

| =
g MR
Il

T)o1s

)

z(t) = X (t) +op(t). == <t <0

x(t) = Xp(t) +op(t)., 0<t< 7

.:.’lff‘llEX;_ll:'f:l—i—:”L[l,rf‘,l. %‘;f T (7T8)
3

x(t)

.X—‘r‘_r| I:.I"jl + (=] Iif:l T <_, 1 <

R I
x(t) = J-‘S_;_z(f":l + vpalt). - <t < 2r. ete.

We define the fime-2r Poincard map Py by:
- T dvy T
o (s (). 22(-5)
3 UFE‘L-_) l.'_;a'T .
= () o) 7 R .’}?‘f T - B | i..’,l

If @(t) is the unigque periodic solntion of (41) then it
must be odd periodic and leads thus also to a fixed
point of the half-period Poincaré map:

P (o (-5). 2 (-5))
= (- ()% (3))

di
The svimmetry ¢ —  + 7. @ — —ur implies that.
in fact:

|: \lll

IF".J == ]P‘ (] ]P‘_ |: $l :'

Indeed. under P the point P(x(—7/2).dx/dt(—7/2))

corresponding to a solution x(f). moves to

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

Pi(—x(m/2). —da/dt(m/2)): Also. the point PJ (.
(—70/2). day /dt{—7/2)) ecorresponding to the solu-
fion @ {t) = —r{f + 7) moves to f’{,.(—.;q(ﬁ:ﬁ"?).
—dxy/di(7/2)). But v (—7/2)= — J'{_ﬁ.,.-"?,'l. day /et
(= /2) = —da/dt(r/2), i.e. P} = Py and —zy(7/
2y = x2(37/2), —dr/dt{m/2) = dx/dt(37/2).
Therefore Pﬁ. is at the same time the mage of
the original point P, mnder P o P and its fmage
under Py. This shows the validity of (81). Now.
the mismateh at ¢ = 7/2 between —Xp(f — 7/2)
and Xp(f) may be made arbitrarily small. simply
by increasing the truncation orders. according to
Theorems 3.1 and 3.2, We shall ignore this small
correction i the following and regard P as being

simply:
P(e, ) : (f‘;_ (—:T)) W (_i)))
Lo (g)). (2)

I the next section, the definition will be fur-
ther modified. by mtroducing another independent
(time) variable.

4. The Invariant Sets of P("; )

4.1. A characterization of possible
invariant sets

The hunetion vy (1), defined as the departure of a

solution #(1) from the reference funetion X (#) (cf.

E(i, {TS‘J ) 0})1‘_‘\'.‘41

Ur.e";_
dt

d?vp
dt?

TN R T N )

i53j

A similar equation holds for the function vp(t).
Eq. (78). the departure of o(t) from the right-hand
side (t > 0) reference solution Xp(?). It 1s conve
nient to introduce new independent variables for
t< 0.1t >0, in trn:

g3t
ij_ = 3|':2.___|'!2 _X—Jr_l:ff_‘,lh'rff.
i
{54)
of
HH == :51 .-2___—1_..-2 / ‘YH”};‘{H!
i TU.'E3:8

for a 7o such that X (7). Xg(7) # 0 for 7 < —7p.

!

7 > 70. in turm. In this section. we prove the
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following:

If the Powncaré map Ple,p) has
then, for = sufficiently small. they
are contained in a rectangle:

Theorem 4.1.
itnvariant sets,

Ve - | 4 dvy, (4 73 16T/ 2
Bo: [or. (=3 )|+ g1 (-3)| <M
(85)
with (cf. Eq. (21))
k= k(e) = ;731 = Ei (R6G)
2InT

and M independent of =.
With

reads:

this definition of x(z). the “damping factor”

/ / ; Py
exp(—At) = t‘\p(——f‘ &, (87)
Sinee (as will turn out) bifureations ocenr when

= (){1). we shall nuse this latter notation from
110%W O11.

4.2. A qualitative argument

To explain intuitively the origin of this theorem, we
notice first that. as a consequence of Lemma 2.2, all
solutions of (83) must obey eventually

()
Lo T
{;:.';J (_5)

with A, C of (34). Indeed. the reference solution
Xp(t) obevs Condition 2.1 of Sec. 2.2 on an inter-
val [—3m/4.—w/4]: there X (t) ~ (sint)'/? (cf.
Eq. (62)) and one can choose a.b ~ 271/ Thus,
mvariant sets can be only subsets of the rectan-
ole (88). Using the variable #;. Eq. (84). the last
mequality is transformed into (with a redefinition
of I):

dey T s s
J—{;f-(—_;) < K& e

With this in mind. we perform a change to a new
dependent variable wy () throngh:

Wl { HJ{ :I
| — -Xjf | '.—
where o > 0 is for the time being unspecified.
(:‘].(‘i'il']._\_'. vr(—m/2) = wy, |"|'(i'l —7/ )I )et . The funetion

—H |"-}——_-)|_r|

vpit) = (89}

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

hiwrcations an the Forced Duffing Equation with Damping

wy verifies for £ < O

7
d=w .
..)f + ey 1+ qr |HJ{ = ”'fh':{’lh )
{EH}‘ 4 ’
hglr.r(') I .
+ 2wt =0 (90)
where:
k(w2 o
hfr) = ————= (91)
T (=Xp)?
(“EXF‘ )2 d*Xy
o 5 dt e " di2
gr.(01) = ——— — -
T B 8 X3
a0
In? (—)
2 = )
— K g | (92)
¥ 'Z \ !
3X 7
Since (=X )(6) ~ |’l-:]'_11;f')|"':'{ for t < —7pe”/®. one

chedks that gz (01) ~ e(t /34472 "'111 (1/2)) and is
thus O(1) at t = O(c”"). drops off at larger |t| and
}wmmm O(=1n” .1*--'.. at t = —m /2. The function
h(8;) is not monotonical bat luw aminimum at f of

O(1/(kIng)) where it is O™/ 29| '111(1*_—).1 ).

It is O(1) at t = O(=" '*”“‘,u. if kT + 20 < 3/8
but stavs otherwise o(1) down to ¢ = Of /%), We
denote:
L RT+ 20 1
p=min| ———. - (93)
3 S

so that () is O(1) at t ~ =¥ if p <
following is a gnalitative argmmnent for:

Statement 4.1. [f p < 1/8.

f?uf: of vp(w/2) is 2™ (
ﬂm}.‘ v (=1/2)).

() 4/ 164k

1/8. The

the order of magni-
t.e. smaller by o factor
If p = 1/8,
) and this order remains unchanged in
Hn’ fu”uu ing half periods.

then vp(m/2) is

The essential point in the argument is that the
magnitude of the jump of the “reference” solutions
Xi(t). Xp(t)is O3, Equation (90) describes an
oscillatory motion in a time(#)-dependent poten-
tial which has a single mininnmm at wy, = 0, 1If
|| < const at ¢ = —m /2, one expects that this
motion remains bounded. uniformly with respect to
c. at least as long as |h| < const. i.e. down to times
of O(c%). At such values of t, according to (89),
vty is then of O(<7). The order of magnitude of
v (1) 18 likely to stav unchanged down to ¢ =
there, the reference solution is changed from X, (t)
to Xp(t), which means a shift of O(=Y%). If p < 1/8,
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this shift is unnoticed: the function vg(t) has the
same order of magnitude as o (#) and we shall show

that this is preserved up to t of O(z*). Using a
change of variables similar to uttsJ):
WrplR) iq,/
vp(t) = 7 _.,H' _._.l..’—l—.{; /2 (94)
R

we verify that wg(fp) obeys:

fft‘r;'

N +wr(l+ar(fr)) +whk(0g)

R
w,
+ L2 =0 (95)
3 '
with gp(fr) analogous to gr(@) of (88) and

k()= 7 (96)

The funetion k(#g) is monotonicallv decreasing
from ()(: :_:{;;_..-'2—:{_.-"J{s} at + — (”)u'\_;"'i-"""" } i ()." ___.-;r_.-"Z-i-'-i,n -")J
at t = /2. Now, if at t = O(e7P), vp(t) = O(=P).
it follows that wgr(fr) is Q1) there and, since

the motion described by (95) is oscillatory and

hopefully hounded. it stays so up to ¢t = /2
consequently. a';-{f;:.f"?‘. = (e"*/2+3p/2) This is
Ot if p < 1/8. Thus. in this situation we start

the next half puuuel with a value of vy (—7/2 +7)
damped with respect to the original one by a factor
7 As announced in Statement 4.1, if p < 1/8. the
new half evele starts with a value of a. inereased
by wm. After a finite number of eveles. a will be
such that the inequality p < 1/8 is no longer valid.
When this oceurs. the maenitnde of op(8) at # = 0
is o(=!'/¥) and. since the jump of the reference sol-
tions is Of _-“l"'.'g' ). :‘Jrglf'l is also of (@18 -'l q . Then. the
change of variables (94) with p = l,x"bf H}_llr\\'H that
wr(@) is O(1) when t is of O(*%) and it follows that
ve(T/2) is of OQ(e¥/2) = O(e#™/2+3/16) a5 stated in
Theorem 4.1.

To conclude, if we start with a value o such that
p<1/8 e o < 3/16—km /2, it will inerease in the
following half ey eles until it gets over this bound: in
the suceeeding half eyeles it does not get any more
below. Indeed, if we start with a = 3/16 — ki /2 =
ag, h(t) is O(=%), with s > 0 at (=) of O(& 378y ;and
v(t) is of ().- 1 "+“): it is thus at least a factor =°
hmullvt than the jump of the reference sohitions.
The murinu contimies at £ > (0 with oscillations

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

and. as a econsequence of the damping. becomes
O(e"™ /2316y 5t + = 7/2. Thus, once solutions are
“trapped” in a rectangle (85). thev stay there all
the time.

For a proof of Theorem 4.1 (and of Srate
ment 4.1), one has to place indeed bhounds indepen-
dent of = on the magnitude of the solutions wy (&)
of Eqs. (90), (93) and also justify the preservation
of the magnitade of the solutions in the transition
region ( —mpe?, mel).

4.3. The interval

We show that, if the energy of the oscillations of
wy is bounded at # = —7 /2. it stays bounded up to
t = —7pe¥, uniformly with respect to e, if 79 is suf-
ficiently large. To this end. we consider the energy
associated with (90):

1 fdwp\* 1, o
EI‘H'II = 5 (;f{;}h ) —|— EH L |:|‘_l —|—_{_,’|,!{7‘Jf‘_)| !

= En‘f‘h |"ng‘ )

=2<t< "%

1 :
+ a”'i’f“i"’lf..‘-'g} : (97)

The quantity in square brackets is positive definite
and larger than 1/3 +¢(8;). so that (g(8;) = 0):

|H Ll /UFI ),

{Ox)
duw; _ _ (98)
‘{'E"_ )| < v 2E(0r).

It follows thar, if £ > 1 and for those values of 45,
for which |h(f.)] < 1

dFE L 5 dyg 2 dh " 1 gy dh
a2 a8, ~ 3" Fae, T3 G,
o f | dy dh .
< AE(6:)° —_— —_— . (99
i 5£|‘ L) ( IIHI(‘ {JEHJF ) I I

This inequality implim‘ that. if the enerov at —w/2
is bounde w] })\ a munber Ey and if 7o (Eq) is such

rhar L‘l TOLE P I allfl f,fl TOLE =3 I are so hllmu rhar-.

1 . 3 . e
— > 3g(Tore™) + 6h({T0e™)

Eq
then E{7q;27) is bommded. Thmn mequalities imply
that |op(Tor2™)|. |der/df 1 (To1.2°") | are boumded by

r_] - T - R LLH z —~ \ \ .
of () ] :‘11“11}_1(1 l—}.li- re f* remnce _X. ,mf |2 l'ht‘ll ti].l].}_.)].l— (& I:-E-U‘I oAt l—}.l"‘H(‘ \"?1].1.11‘.‘4 of 1. T}.l(‘ COLSCALLD ITICTeaAses
’ " ~—1/2, v
tude dw reases gradually (due to the factor X, ') as Ey increases.
1330006-16
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4.4. Theinterval (¢ "%; (gr"3P)

Changing variables to

t=0e?P, y=Ve (100)

one transforms (83) to:

d= _I_'_};.‘-_-]'IB_’” lll(i) ﬂ +
=) do

9 V2 2T
5 .AI‘_\; & ’“}I
de? i

+3(Xpe)\V24 V3 =0. (101)

oy o e i e o A
For t in (—79,2°7. 0). it is true that | X e 77| < Tol *

Also. one verifies that. at + = —Tr_‘_.;_;':i'”. |#ﬂ-'_..-"'u'rr|
i= O(1). Thus the energy associated to (101} is
bounded by a constant at ¢t = —7r™. Further. it
1s true that, since the potential funection is bounded
from below by V*/6.

V()| < 2BM4.

|i 11 |3J|

Then, assuming E > 1. we may bound
{ ai Xie P
gh < 8E3M 2 Gh

dea

de 2
and. integrating this inequality from —7y =™ to 019;

i

t’j‘l: -\-—f. g P 2 ‘

da

{ J_‘].'S_‘Il

It follows that both |V are bounded

at { = 0 and therefore;

and |dV/do

dey
—L0)

LT

< (\ g,

vr(0)]| < C&¥, (104)

With our definition (93} of p. the departure vp(t)
of w(t) = X (t) +vp (1) from Xp(f) is also of O
and the same is true for dog /do (0). With the change
of variables (100). with ¢ replaced by 5. we obtain
an equation identical to (101) with Xg(¢) instead
of Xp(t). The same argiunent as before shows that
the energy associated to it s bounded at ¢t =
f_r.uf-f:'}‘”. for some I['ail' this stage al.l'}.!il'l'all‘l\") choice of
mor. It follows that |vg( .'_r_],f{-i':{‘”',l|. |:I:‘,r,:;"fff-f;g(T(_.,rg.f'_':{f'ﬂ
are bounded by C{rygp)e?. Clearly. the value of
C({1yp) increases with 5.

4.5. The interval ("3;"9);q< 3p

. . i/ .
In this interval =" == 1 and we may write:

978
1 (6or\""
k(0p) ~ =) j
\ ! Tl r .2 HF?
0

3 \"S Ap—1/2 4/3

o ~ 1 o

The range of values of 0y corresponding to this
mterval may become arbitrarily large if ¢ is chosen
sufficiently small. We define wp; throneh Eq. (94):
it follows from the previous paragraph that |wp|.
dwp/dfp are O(1) at t = =, We shall show that
wp and dwg/df; stay bounded in the whoele inter-
val (2%, ). wr(fg) obeys Eq. (95) and by analogy
to (97}, with the same notation for the energy, but
the replacement of i€y ) with —&(fg) we may write:

dk

dE 1 o dgr Sl
HPH_({"

?l":;]-; {f;," J.
W
dog 2 g

ZwLk
3 JHH G Wk

{ 106)

We cannot repeat the argument of Sec. 4.3 because.
if we trv to Increase the valune of dyp to ensure an
inequality like (99) we inerease at the sae time the
bound on the possible energies (see the last para-
graph of Sec. 4.4). One seems to need a rather long
detour.

In (105), dgg/dP . dk/dB g are strictly negative,
so that the only term which may change sien is the
middle one with w?,. Thus:

dE

AE 1y | d
-’;'frq_lr]) E _; L

(45 R
2, (107)
dflp;

We can use now a bound on wp similar to (98) to
derive the inequality!!:

dE
ffr('}j'g

dk

’-f, (.E:Jj-': 3{ H“: :I
b

{108

Unfortunately. we cannot draw any conelusions
abont the boundedness of £ for large dp directly
from (108) unless some other restriction on E{fp)
holds. We shall show in Appendix A that. in fact.
E{0) increases for large 8 at most like 1'7";1',':']_'H for
some s > (0. i.e. for #5 in this time interval:

. 3 —s
E{ HH_‘.I < CONSE (i) - (109)

0

o

[I'p = 1/% there are also constant contributions of the upper limit ¢+ = 0; they do not play a significant part,

1l ] : i . :
{'u[:ll al ' denotes a constant which need not be H[:-H'llut] in maore detail.
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Using this m ( 108) we obtain:

"’JJE ) (_‘ ijf‘ G/8—3s/2 .gﬁji‘) ) 3/8 l
dir o O ) Ok

which leads by mtegration to an mproved bound
on E(fp):

;AN 3/4—0s/4
. Pr :
Efp) — Elbp) <C| — . (11
' Aor '
Using this bomnd again in (108). we can further
improve (111} and after a finite munber of such
steps, the power of (0p/fyr) decreases enough so
that we can state:

{ 1 lﬁ"-'_',l

EI,'HH ] < const

for all #5 in the time interval (=%, 29).

4.6. =2)
This time integration of (108} leads divectly to the
desired bound:

1 1

.
VE(Or)  /E(Or(<7))

The interval ("9;

—2C(k(Br(c?)) — k(Or)) (113)

we can always choose £ so small that the right-
+ iz B .

hand side be positive.!? This leads then to an upper

bound on E(f#r) and thus on E{7/2), as announced.

4.7. Summary

The important point concerning the bounds which
were established above is that they are indepen-
dent of =, only provided = is sufficiently small. We
can now review the qualitative argument for The-
oremn 4.1 given in Sec. 4.2, whose gaps have now
been filled in. As we have seen all solutions reach
at some time nw /2 the interior of a rectangle I of
size K" around the reference solution' for a
certain constant . If there are invariant sets, they
are contained in this rectangle for all times mr /2.

m=—oc---oc. lf Crr/4 >3/16 —kx/2 = oy then
the argmment of See. 4.2 shows that those solutions
that are in I at. say. { = —w /2. are contained at

t = m/2 in the rectangle Dy of size M, ~7/25/16

Eq. (85) which proves Theorem 4.1 for this situa-
tion. If the inequality is not satisfied. we may find a
constant A so that the solutions are econtained at

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

t = /2 in a rectangle Iy of size M e#(7tC7/) | a5
argiied in Sec. 4.2, If k(Cr/4 4+ 7) > ap. then the
solutions reach at + = 37 /2 the interior of Dy and
the proof stops at this stage. If not, we find 1/,
and a rectangle Mo of size Mo CT/H27) g6 that
the solutions are contained within it at ¢ = 37/2.
After a finite munber of steps, the bound ag will be
overcome and this ends the proof of Theorem 4.1.
Independently of the existence of invariant sets.
the argnments of this section lead to the following:

Corollary 4.1. Consider the solutions vy (t) start-
ing ot t = —w /2 in the rectangle (85) of The-
orem 4.1 and the corresponding functions wy (8).
wr(l) defined in (89) and (94). There exists then
a constant M. independent of = if = is sufficiently
small. so that

' dwpr| o
ltwr (0L 12) | <o < M (114)
LR

for t(0r.r) in (—7/2. —70e>™) and (10e%P7/2). in

teerm.

This remark is used in the next sections to jus-
tify the averaging procedures emploved there (see
[Arnold. 1978, Section 52]).

5. The Left-Hand Side Poincaré Map

5.1. The left-hand quarter
period map

In this and the next section we derive approxima-
tions to the half period Poinecaréd map P restricted
to the rectangle (85) of Theorem 4.1. We consider
first the quarter period Poincard map:

e
= (f‘f.': 0). %'i_”_‘.')

where 7 is the “boundary laver” time variable intro-
duced in Sec. 1, Eq. (18). 4 is defined in Eq. (84)
and vy 18 a solution of Eq. (83) for —w/2 < ¢ < 0.
Note: In this section we shall drop the index “ L7 on
the varwable 0 because Op. Eq. (84). used forit = 0,
does not appear at all. Also. for case of notation. we
write g(0) = g (#) of (92). Instead of the rectangle

L) Jos o # o - . .. oiqe . v . Y o
2 The value F( Hris?)) is independent ol 2, il = is sulliciently small. according to Sec, 4.5

10 the variable #. p is used [or time.
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Eq. (85) we mayv consider a disk of the same mag-
nitide and parametrize:

o (=3)

(-3)=

';“3"':. ]{.’I-’_h—?;z;’k cos ¥ {0

(116G)
:‘;:"L
a9

With the change of dependent variables (89}, we
are led to Eq. (90) where now a = 3/16 + sm/2.
The funetion h(#) of (91} is ()('.:_"-{-"H""’“"T’:j“l At =

316+ kwr/2 2
— W6 RT/2 A i Wy,

—m/2 and O("™) at t = O(<3/?). In an interval
Ii, = (—=C.,—14e°(8 ). where C. — 0 when = — 0,
we can set sint a t. so that Eq. (84) implies

t v —33—@y3/1 and it follows that. for |T| suf-
ficiently large:

~m(t+7/2) sk /24+3/16

hit) = X,
—(—h 3/8 a3/2
T — . o= ———. (11IT)
( "y ) 0 1 VAL
For't =%/% = 0,003, Fig. 3 shows the appearance

of hi(t): in the range of » values of interest (see
below), the function g(t) is much smaller than h(t)
(at t = —10 x 3/ it is &~ 8.5 x 1077).

)
—

5.2. The interval ( =

:2,
The influence of the nonlinear terms of (90) can
be analvzed due to the smallness of the funection
h{#) in a manner inspired by and related to the

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com
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averaging method of Bogolyubov and Mitropolsky
[1961] {especially Chapter V). We use new depen-
dent variables R(#) and o(8):

il !!'i':l — 1'_( ) cos| H— Hy + [} H\;I | "ll\“ |
diwy ey . . o
e S —I:”l r()':l H]_]'_ll: H— H[] + (.-'}I:[(?‘:I :I |: lls}\)
dd :
which transform (90) into the pair of equations:
di 1
— = —g{ VRO =122
T = jmﬂ,ﬂﬁ,hllll_..,
|- P 2 AT
— Ih(HJ R{8)2(sin 2 +sin(32))
.]. e | ; J. v o - 1 " . B k
4+ —h()V"R(OV [ sin(22) + = sin(4z ju)
12 ' 2
(119a)
do 1 -
E — E.r“tc)':l |:l + (‘()H'IE:;' .:I
= Ifa‘(ﬁjl R(O)(3cos 24 cos(32))
a2 3 , 1 ,
-+ !?I\Hjl_jr‘il‘r()‘:l = -+ 2('115{_2?_} -+ 5 ('J'_IH[‘_-I-;' )
(119h)
with

E'I:’.Q:I = = H(} + f.'}I:H:], |:’. lj“:l

According to See. 4.1, the function f7(#) is bounded
independently of = for # corresponding to ¢ in an

h(theta,eps=0.19E 6)

F1.8
F1.6

E1.4

700 600 500 400 300
theta
k=0.05
k=0.04
k=0.03
Fig. 3. The function k() for relevant values of the parameter .
U The quantity £2/® measures the width of the boundary layer; it corresponds to = = 0.187 x 10 ©
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interval (—m/2. —7m7¥). Due to the smallness of
hi@) and _x_',r(ﬁjl. We expect both () and f_')(ﬁju ro
have a slow variation compared to #; one might he
tempted to replace Eqs. (119a), (119b) with their
averages with respect to @ (or with respect to z).
The fact that L(#) is not integrable forbids however
this simple averaging.'® Following Bogolyubov and
Mitropolski [1961]. we perform a transformation of
the dependent variables to new variables by:

Ry = ROy — %h(ﬁ')fi(ﬁ)z (ms T+ é('!lﬁ(fﬁ-‘: ;.)
(121a)

O1(f) = o(0) + zhu; A R(0) (‘5 sz + 3 sin(Az) ).
{(121h)

The Jacobian of this transformation is 1 + O(h)
s0 that the transformation is locally invertible 1f =
and thus k(#), are small enough. From the bounded-
ness of R(#) established in Sec. 4.1, it follows that
B8 is also bounded. independently of =, More
over. one can show that the transformation (121a).
(121b) is in fact invertible at fixed # on its domain
of values in the (R, o) plane if k() is sufficiently
small. This question is discussed in Appendix B.
The change of variables (121a). (121b) “removes’
the terms of O(h) in Eqs. (119a). (119b): the equa-
tions for R (#), o(#) read:

by 91.45.190.167 on 03/21/13. For personal use only.

dR(0) L .
”:T} = EII'IH(?‘:I_{]I:Q;I H]_Ill,r??‘,l

1t

. 519 j
+ R(0)*h(9)? [% sin(2:) + T sin(4x)

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com

)

1 i 2 dhy\
— g Sin Uz,} + O (.h g, E) (122a)

§]

dery (8) 1
# = 3{{{3]}{1 —I— (‘HHI:._Z':‘I :I

df )
f'.{H'juzf |"H”|I‘2 _i _ i o Hl.rlg.“,'\l
+ f 1o { YT .

g dh
3
A (.f: g, _!’EH)‘

15 ; ; g g
As will be apparent, the corrections may not be finite.

— —l- cos(4dz) — i cos(6 ‘.'1.I:|
24 48 '

(122h)

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

I these equations. it is understood that R(#), &)
are 1‘1-‘111;1("1-‘i1 }J_\' funetions of irl'] (@), o(#H) obtained
by the inversion of Eqs. (121a). (121b). To first
order in fi(#) the latter reads:

1 9 1 '
ROy = R0 + —JH\H_}R] '::{"':‘J'_<""-"‘“' 71 + 5 eos(32 I)
5 a

+O(h?) (123a)

. 1 . 1
ol = o(#) — I;‘:(H}RJ{H) (.‘3.4111 1+ 3 .-'111|,'.'3‘_-[‘,|)

—|—()|::,}.?2:| u{ll}h)

with

21 =6 — O+ d1(6). (124)
Since h(#)2 a2 =27(,/0)37 is again not integrable.
one canmot divectly draw conelusions about the
beliavior of R](H_:I and {_'J]I:[q;l over li'il‘g(\ intervals
of . An attempt to remove the terms in h(#)? can
achieve this only partially: the equation for ¢, (#)
contains “secular” terms of orders h(0)? and ¢(6).
Le, terms whidh have nonzero average and which
cannot be removed by a further transformation.
It is relevant to notice that. in order to remove
termis of higher order in Eqs. (122a). (122b). one
does not need to resort to the explicit inversion.
Eqgs. (123a), (123b), but regard RL Ri.o0). ol Ry, o))
as known funetions of #. whose derivatives are given
by (119a). (119b). With this, we introduce new vari-
ables Ry, oo bv:
s 19 3

Ry = Ry + R(0)1i(0) (-—- cos(22)

192

(125a)

1 _ 1
+ T cos(4dz) — 193 cos(62) )

. 57 B |
b9 = d1 + R(8)%h(0)? (% sin(2z2) 4 9% sin(4dz)

+

sin 6 ) : {125b)
288

As follows from Appendix B. this transformation
is invertible under the same conditions as those
of Eqs. (121a). (121b). Using (123a), (123b) for
R(&). o(f). it is true that:
Rl = 1r1'2 + ()I:Ih._}\‘.l

@ = o9+ O L2y, (126)
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Use of (119a), (119b) for dR/dH. do/db and
of (122a). (122b) for dRy/d8. ddy /df leads to:

ARy (8 1

—_ —'Jl |H|"|
7 ,r VR i
o dh
o) (127a)
4 (I o }) (127a)
e’j-:’_')-bﬂ:rq:l 7 R(6) 2; [(,JH q16)
P Y W+ T

+l f 22) + O [ h3, o /
—qg(H) cos(Lz) g 1. —. qh
_;)_Jl / <=z a0 g
{12.{_}1}
It is convenient to perform a further transformation:
|

R.;.;Z _R)—F {jlr_{{f]‘-.l:.:':

Oy = o — —{) H']_]_]_l_ %)

a J

“nonsecular”

This

which removes the
in (127a). (127h).

terms i g(#)
transformation  brines

ed from www . worl dscientific.com

to (127a). (127h). proportional to dg/df and q(8)°.
The former is dominant and, when its absolure value
is integrated. leads to a term of O(g(#)). Now

H(—7=38) ~3nT [24+-1/16
/ hig) df = O 1
O —m/2) ].11 (—)
and vanishes as = — 0. so that we conclude from

=
g
w
2
p= |
=
[ =]
(=]
g
&
b
o,
2
1=
=
o
o
)
m
o
=
=]
i~
(Y]
=
o
i
=
o
P
s

Eqs. (127a)-(128) that:

E
r‘_;
i
5]
o
o
o=
=]
w
o
o
=
()]
B
P
=
m
i
I
£
5

-0
Ry(0) = Ry + O / h(e" )y’
JE(—7/2)
+ Qg {(129a)
7 .4 . .
o Hl = Qp — — 1'('1(1';}2.![?.( HI)ZF'NJV
'1 [l —7_..-'_ |

1 ()
= / g(0"do'
'—) Bl—mf2d)

0
+ 0 / h{&') Sae
A—m/2

+ Ofq(0)) (129h)

where Ry, o4 are transformations of the initial
conditions at t = —x /21 (116). If, recalling {123a).

(123b). (126) we invert the transformations (125a).

additional terms i the equations corresponding

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

Wifurcations an the Foreed Duffing Fouation weth Damping
(125b) and (121a). { 121b) we obtain, using the nota-
tions in (1167):

w6

R(H'I =A+0O / h l"r.q'p:l:i!ftqf

JO(—7/2)

+O(g(@))+ O(h(#)) (130a)

i W

A i
MEY = Wy — —
() U =

JE—7/2)

1
/ gl s ) das’
Jd[—m/2)

-7
0 / h{(&3de'
‘ 2

A —r/2)

fl;uhl Y2 de'

_|_

L] =

+O(g(8)) + O(h{8)) (130b)

In Eq. {130a) we see that. up to possible oscilla-
tions of O(h(#)). R(#) stavs constant at its initial
value at t = —7/2 down to t = O(%/* ), where the
second term containing g(#) may become relevant.
Evalnation of the integral in the first term of (130h)
leads to:

by =—— R2.h(8)2de

_ N 2/3
O ~1/3,.2/3 hl(i) '

As it will become apparent. bifureations occur when
""T;“I' = (2(1) so that this contribution to the
phase due to nonlinear terms (these contain h(#))
Is important: it decavs indeed like 1/{In(1/ 1/£))2/3
but this is very slow. The bounded funetion of &
and = which multiplies the term under the O() sign
hias a nontrivial behavior and is shown in Fie. 4: the
magnitude of the phase variation implied by (130b)
depends on the value of k. Le. the damping: at
S = 0,003, for k = 0.04 and A = 1t is 0.46 rad.
but at 5 = 0.02 it measures 2.01rad. The second
termn in (130b) is related to the linear part of (90)
and brings a constant contribution at ¢t = —me”/ ",
We conelude this diseussion by stating:

{(131)

The solution of (118a), (118b) with

= A o(—7/2) =

Lemma 5.1.
the initial conditions R{—m/2)

Vg is given by FEygs. {1-'5’!’)‘(1];. (130by for t in
—m /2. —Tp :_H;'\: |
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k=005
k=004
k=003
Fig. 4. The dependence on = of the hotor multiplving the O() term in (131).

In Eq. {(130a). (130b). the terms containing g(#)
originate in the linear part of Eq. (90): so we expect
that if we solve the linear part of (90) (for a function
wr(6)):

(lrze‘;'-‘;‘liy‘.l e PP P

:,“T +ewp (01 +g(0)) =0 (132)
with the initial conditions:

:‘F‘JF_ (ﬁ (—%)) = _"‘Lf‘fl._k'l"j\[fg—i- ‘I’f_.‘,l.

‘i;;f- (H (_g)) = —Asin(¥y + By

with &, of (131} we obtain for ¢ close to —mpe?/®
values which differ in O () from those of the com-
plete equation. In other words, the only effect of the
nonlinear terms in (90) is the addition of a phase
&, to the simple harmonic evolution. For clarity. we
do net expect that the solation of (132) with condi-
tion ( 133) approximates the solution of (90) over the
whole interval {—7 /2, =12} only the values near
are presumably well approximated. To
render this precise. we analvze (132) using the same
transformations (118a). (118b) to new variables

called R.a which obey equations like (119a).
(119b) with h{#) = 0. Performing the change of
variables (128) leads in analogy to (130a). ( 130b) to:

3 L
t = —7e/°

Ir-?J (B)= A+ O(g(#)).

2 1 fe o
o H‘J =", + ‘I)L + 3 q(é _:lf.i"rqf { 15-1,1
= J&—ax/2)

+ O(g(#)).

Comparison with (130a), (130b) shows that:
|1rf|:{?':| — R(H :|| = ()I:{JII:HI )+ ()I:llr.? |:{?':| )
(135a)

o
) / hid"y*de’
JO—7/2)

-t ?
,}.?_( [ ) : I'.r,I’.r,C}';

f;fl"?':l — t’.;l:gll| == () /

SO —m/2)
+Og(8)) +Oh(d))

T -—H[.—U-?3:8 J

+_

AIXI_)IIPJ:.H! .:I! ﬂrt()'f.
21 /, L

If A is sufficiently close to #y = #(—7% %), e
corresponding to ¢+ = —£%%70 for & sufficiently
simall, but nonzero, then all termas on the right-
hand side behave like positive powers of . As is
easily verified. using (117) and (92). these are (up
to logarithmic terms) in (135h); 37/ 2H1/16  83/3
HTH0/2  25m=0/3 i1y turn. There is some freedom
in the choice of 4 a simple choice is § = 3rm/8
where the O(g{#)) term is dominant and the differ-
ences (135a). (135b) are of O(c"™), If & is large, this
cholce becomes inappropriate: if e.g. km > 1, the 7-
time interval of O(z7%) is with this choice larger
than the damping time 1/, We are interested in
r-intervals slightly larger than the O(1) seale but
much smaller than ==2/%, We write (with some arbi-

frariness)
) i (1306)

R .
0 =— r=min| &,
h

B =
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With this. for |7(#)| < g0

|H_‘f_ (Hy — t‘f"f‘fﬁ“l||_

t’[fi'f_“f‘ (rq'l {I-‘F‘L |:irj':| O(=" I‘ 137 ’I
— = (7).
{-'_rf('} {ff‘/ ' '
Now. the variational equation around the ref-

erenice solution X (f) to the Duffing equation (41)
{or (8)) reads:

VL)

2-\. —
d (458 .rlr.“;‘
c—s— + 2
dt= dt
With the same Lionville transformation (89) we
may write for its solution:

33X, ('f",lgf‘f_ = (.

\ oR(ET/2)
j2ra16WEE)E

(—X ()12

where @ (#(8)) obeys (132) with initial condi-
tions (133). Since _\"; 1 R~ —t12, one verifies
from (139) that, for { ~ =" both vy (t) and o (t)
are of OQ(g"mT1/8+0/6) Ir s convenient to revert to
the “time” 7 and to variables ug (1) and a;(7) used
in the boundary laver region with the scaling (18):

.’-‘L {'f )= g™ |: _]_'_?,U:.

ur(tT) = _-‘_J-"".x."(f}.
(140)
i J{_I:\.’_.‘II = -'_'_J £ :“‘Lffl:l.

'

Since for small £. 8 &~ —7Y% both duy /dr. diyg /dT
are of O(e""~%/%) at t = —¥/*~°, Using (137), we
conclude that, for such values of t (7 =27%):

|'H;_ |: f_.‘.l = :“!f‘ Ilr. .’_-:I = ()Ir =;"II_7+J.+;’ ':h.:l.

duy diry.
1T —

ct4-r—a /6
( —I:.’_:I :()lff'l'-'—' ) :l
dr "’ dr *

The above is stmmmarized i the statement of

Lemma 5.2.  The solutions v;. Eyg.

Eq. (90) with the initial (116) are

-fippfru imated together with thewr derwatives at t =
R—d

conditions

by the solutions of the Hu?ahm‘s:f eqLa-
fm. (138) with the tnmitial conditions

0, ( 7) = ¥/16+m/2 A cos(Wp + Br)
i - (142)
avy, m 3/16+KT/2 A o ;
e | g Asin(Wg 4+ Pr)
df ( f) ! -

and Oy of (131) according to the estimates (141)
with the definitions (140). (136).

From E¢. (139) one sees that (142) is only a refor-
nlation of (133).

(807, of
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Using the estimates (134) and neglecting the
contribution of the integral over g(#) we can write
uniform approximations @' (#) to two special solu-
5. (0 of the variational equation ( 138) on the

L3/8—d,
E )

interval (—7/2, —¢

ghlkt#/2) o8 T
B (0) = T { ek } (H—H (_E))

tions

(143)
These solutions (and their approximants) nhm-"
:”., kgl —I, _| | = 1. E-‘ |IH| —TT .’I?.;II = (. hl-"f‘ f}rHI(HI et

3‘|‘| = ()l hlllf ”,I. Hr.” I(Hl {.Irl"-} Hu—n “’3‘!! == Cﬂltl—
paring w ith (84) one recognizes in (143) the “WIKB
approximations” to solutions of Eq. (138). At 7 =

=, | Xy (t)| s B8 = £/80/3 gnd Eq. (134)
shows that:

||".‘-h‘t._ — ?‘H .,: — -:'_'j:‘l||
4 =3

— gI3HIA-LI8 o 1) / g(0)dd
B —m/2)

O("m/2r/2+8/6-1/16y (144)
where we nsed g(#) 1/62 (cf. (92)) and (136). The
same (uality of approximation holds for do, . /df.
but for di, . /dT we obtain. of dr/df =~

: !
~—1/3 _

n view

dv,. . Hre“-‘},l

. - i - () KT 24/ 2—3/G6—1/16 ) { 1"]:5"

dr dr S
With the help of (143) a uniform approximation on
[—7 /2. —= 7] of the solution of (138) with the initial

Ulllillfil ms (142) reads:

;“r_ { t :I o é:}‘l- Irf‘l = ;\.;7:'I'.-".“.’—'—"‘-’T'Ez {:ﬁ]} j { H :I & ?.‘-h: ‘I“EJ + tz[)f‘ |

- !r.ll' (#) sin( Uy + P, ))

A =3/ 16+KT/2
Ae R 2t

|" —X i; I( t :I ) lz-

X €08 ((1’{{ ) — H (—%) + \I!.:] - ‘I)!.)'

With (145). (146) it follows that, at 7 = —=c "
(8 — 81 ) ()] = O(e/F e/
y 51V (147)
do do PO L
L . I |.r | = ()II .__:_] fRtwmtr/2—4/6 ‘,l
dr dr | :
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5.3. Theinterval ( "3%8 .0

We notice that. while the “natural” order of mag-
nitude for the boundary layer is =1/% (cf. Eq. (18)).
ie up(t) = O(1). it tarns out that, in fact, with
the nitial conditions (116). up(7) is (%), i...
for small enough = as argued in Sec, 4.2 it
becomes smaller than the discontinuity of the refer-
ence solutions at ¢ = 0. We compare now the evo-
lution in the interval u,’_'—.-::"""“'""-,H';u of the solutions
of the boundary laver equation with these of the
variational equation around the reference solution
Xp(t). with the initial conditions (142). We intro-
duce to this end “macroscopic” variables:

I-._Ilr..r.:l e _'_'_-Hrrg‘fjg'{.,-_.ﬁ_ !_-'—{..—.‘] i ;_—,-\'T_‘J-;LI:'I_-‘II |Ir l_lr\\\
U(7) satisfies:

d*U dl’ =
-+ 2y — + 3L I"'T')z[’
dr< YT o

+ 3L (1)U 422U =0 (149)

i

and U(7) is a solution of the linear part of (149).
In (149), 5. (1) = X ()/=® and 4 is given in (18).
The solutions of (149) obeyving initial conditions at
7= —= % may be estimated by transforming (149)
to an integral equation with the help of two inde-
pendent solutions U (7). Us(7) of the linear part.
Using the method of “the variation of the parame-
ters” . we obtain:

T U7y = Us (U (79
_I_ l\ ) &S —.J - fl ' ll s
J —E II '-r_cr-.l'!r-'fll

x (U2 4 U dr! (150)

where A;. Ay are such that the values of U and
dU /dr at 7 = —z % are reproduced and W{l7|.Us,)
is the wronskian of 7| and Us. To discuss this equa-
tion, we need to know something about the solu-
tions of:

drr T
d=U dl’ e ;
—— + 29— + 3 (1)U =0 (151)
dr? dr -
for 7 in .;_-_r‘"*_il",._ Writine:
(T(1) = exp(—~7)V (1) (152)

16 . o
[t may be chosen as ol (834) but need not,
1TSea Sec. 5.4,

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

the equation for Vir) is

v
dr2
In Appendix C. we show that we can choose two

solutions of (153). ealled V. .(7. 2). which for large

\ =4

—7 assunie the “WKB" forms:
al/d s g
I_"[u.ucflr_ N 3 CoOs : —_ _\l-"f”r_
SR = ST E) T
¥ ; -:-'.r T ___—:II /4 =1L J- i ;

where

e PR 2517 | 1 Ea
+ (3nr(7 _',IZ -V =0. (153)

—~? (1. e)? & 37%3  (155)

for 7 large and 7, is an arbitrary (finite. =
independent) value!® of . These solutions may be
extended down to 7 = 0 and have a well defined
limit as = — 0. Indeed, in (153} and (155) (7. 2)
is given by the nner expansion (49) (cf. Eq. (74)).
According to (49) and (51) (ef. Eq. (74)):

N7 €)= Noor(T) (l -+ (.-“:{"I'lf'z- ,)) (18

b
=ty
[

so that the limit as ¢ — 0 of expressions (154)
at anv finite 7 is obtained by simply replacing
(7. 2) by noor(7). We can also pass to the limit
in Eq. (153} and one expects that its solutions tend
to the solutions of its limiting form defined corre-
spondingly by the requirement (154). Appendix C
gives (straightforward) argmments for this. The
solutions V. (7. 2. 7,) defined by (154} multiplied
by exp{—~7) (ef. (152)) are chosen as Uy in (150).
Clearly. the parameter 7, is arbitrary and should
drop out in the final expressions.!” One verifies that.
with this choice:

WU, Uz) = exp(—297) ~1, 1= (..)(_i-'_") ). (157)

i

Denotine then:

r(m) =U(T) — AU (1) — AsUs(T) { 158)

and using the fact that |U)(7)]. |Us(7)| < M on
(—=72.0). for some M. we verify that the operator
given by the imtegral on the right-hand side of {150)
defined on the space of funetions ¢(7T) continuous
on [—=7.0] endowed with the sup|(1 + 87|
norm maps a ball of radinus const x =™ %/2 into itself
and is, at least for small enough =, a contraction. so

that (150} admits a mmique solution there. Thns.
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the solution of the complete equation (149) departs
from the solution of its linear part with the same
initial conditions at T = —¢? by O(z" %) on
[—e2, 0], I—‘t'nr the derivatives one obtains estimates
of O(e" w=ebf :

We still have to bound the evolution of the
distance between two solutions of the linear equla-
tion (151) whose values dil‘fm by O(="t/%) and their
derivatives by O(="/ 8 atr=—&" O (of. Eqs. ( 141
and (136)). This is a direct ap[_)li:.-m'iuu of (C.19) in
Appendix C. from which one deduces:

dAU

L

|AU (T = 0)].

=1 |‘ =) ';""_:l. ( 1549

Recalling (148), we may summarize the foregoing
b

-l'.

Lemma 5.3. If a solution vp(t) = up () of

the Duffing equation (83) differs from o solution
1/ Sip () of the variational wj;:(:ffru. around
the veference solution X (t) at t = =352 gecording

to (141), then att = 0:

.‘-‘Jr_ I: f\l =

((ug =dz)(7=10)| = O™,

/!

{I”L ;h” (T 0) O Krtr—26/3 (160)
T =) =0tAh=z |
dr dr \! : \ ]

{recall § = 31 /8).

It is nseful to recall the “constitution” of the
exponents of = in (160) which measure the order
of magnitude of the approximation: a factor ="7/2
originates in the nitial conditions (142); a factor
=T/2 is a result of the damping; these two fac-
tors control the maegnitude of both v (7) and .*?;‘_n,"r".l
in (160); the remaining factor --"'_”-""' (or €7 28/3)
states that the “macroscopic” quantities (148) are
close to each other at 7 = —= as stated in (141)
and this distance may inerease a little as we move
from 7= —="to 7 = 0.

5.4. Summary of the quarter period
map for < 0
.'"T-f—r—'_)r)_.-"li'\l

i

The conelusion in See. 5.3 is that to Of=
the Poincaré map Pr : (vp.degp/dO(pi/2)) =
(wy,.duy /dr)(T = 0) iz given by the solutions of the
variational equation arovmnd the reference solution
Xty with iuirial conditions (142). “\‘.'11("1'(‘ (A D)
are related to (vp. dog /dOit = —7/2)) by (116) and
=y, is given by (1565). We can write a more explicit

form of P using the combinations:

V, =" /2= V18V, cos(§U(7,)) — Vasin(§2(7a)))
Vi = /27 18(V, sin(Q(7a)) + Vs cos(Q(7a)))
{161)
witl

SII: "_H_:I - gl:'l_ujl - '(7' (_%)

a
— 51/2 P
i‘d/ :.I"T,II'_HFT. {162)
4 —T_.-"I”;'?':B i

They are chosen so that ='/%V_ , are equal at large

7 = —& ° to the WKB approximation (143) to
the solutions ¢, of the variational equation (138).
defined by initial conditions at { = —7/2 (see

text following FEq. (143)). The combinations {161}
are. when multiplied by exp(—~7). exact solutions
of (151). The expression:

= .'II.'.I r \-;T-';j r o i A
Uar(t) = Ae™ 16w, (Vecos(Wg 4 Py )
— Visin(Ug + &)
— ATt/ ol I cos({}T,) + W+ Py )
— Vosin(Q( 1) + To+ 1))
= ¢1/8 o (t) (163)
is a solution of the variational equation (138) which
differs at 7 = —=7° from the solution op(t) of
Lenmma 5.2 as deseribed in (147). With the same
argument used in Eq. (159) and in Appendix C.
this difference propagates down to 7 = 0: recalling
the definitions of a;(#) (ef. Lemma 5.3 and (160))
and 1,y (t) (ef. Eq. (163)) then

|(tr, — Tar)(T = 0)].

{IFI'_-}JL Ih}.-:f- (7= )
dr _T_ e

Thus. we ean use the solution a,7(¢),. which imvolves
the functions V., defined by (154) and having a well
defined limit as = — 0 (ef. (156)). to express the left-
hand side Poineard mapping P in a sioapler form:
taking (160} and (164) into account:

{164

|”f. 'i_"—:‘.' — Jj',“(_ |\”:|

< Nur(r) —an(7)| + |ac(T) — tar(T)
— O ___.':,T-i—r—ri_-"i{ -t m+r/ ',1
= O(e" /%) (165)
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and a similar estimate for the derivative:
then state:

we can

Theorem 5.1. The gquarter perviod Poincard map

PL: (AU = (up,dug /dr(T = 0)) is given by:

g, (0) = Ae™ (V0. 2. 7)) cos(W + Dy + Q1)
— V0.8, 70 ) sin(W 4+ &y, + Q7))
+0(="?) (166a)
i (0) = A€’ (F”:' (0,2, 7) cos(¥ + Dy, + (7))
ar o ) cos( \Ta))
v,

(0, e.7, ) sin U4+ D, +Q(7,) J

dr

—+ ()I: :_"'.’IQ ) ) .

Recalling the definition (131) of &, Eqs. (166a).
(166b) show that circles of radius A=3/16t67/2 jp
the (vp(—m/2).dvy /dB{—7 /2)) plane are mapped
onto ellipses in the (ug (0), dug /dr(0)) plane, with
a A-dependent phase @ (see Fig. 5). Thus the disk
A < const undergoes under PLoa forsion. All quan-
tities in (166a). (166b) may be obtained from a
numerical solution of the variational equation only
in an interval near ¢ = 0: it is enough to find

the solutions V., J(T.=.7,)

C.8N

{16061 ))

for a given choice of 7,

u 7 iy

15 N1 5 0 Y

1.5+

Fig. 5. The image of the disk A = 1 under P with the rays
U = nm f4.

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

obeving the houndary condition given by (154} at
some large 7= 27 aned extend munerieally the
solution down to 7 = 0. One mayv object that the
mapping seems to depend on an arbitrary parame-
ter 7,0 this is. however. not the case. The reason is
that in the form (146} of the solutions at large 7. the
parameter 7, does not appear at all. It is thus absent
in the solutions V.. of (161) which march (143) at
r = —c . The rotations (161) which depend on 7,
leave the sums

A% =V (0, e, 10)% 4 Val0, e,7,) %,

B2= (Ef}j')_ (0. e,

dVi\*
T - i 0 = b
"c!;—"({ff_ ) RETR=-EN TS

invariant. Further, the angle y between the vectors
(V.. Ve and (dV./dr.dV./dr) is also invariant. The
image of the circle A = const under P is

deiy, 2 “duy

ut ( i ) M ( dr )

A2 B- ©  AB
It depends only on these three quantities. so that
the independence of P on 7, is apparent. More-
over. the quantities V. (0.2, 7,) and their deriva-
tives have a limit as ¢ — 0. according to the
retmarks surrounding (156) and to the discussion of
Appendix C.
T = —10: ar' rhih' value we can approximate: 5(7T) &
T3Sy L/3 218 The limiting values for = = 0 of
(166h) are found to be:

7 A
= A" sin"y.

COS X

In mmerical ealenlations we choose

sl 7
the constants in ( 166a),

V(0.0 7, = —10) ~ —1.163
iV,
;—'l.'li.“. T, = —10) &~ —0.178
aT
(167)
V.(0.0,7, = —10) ~ —0.0876
'r‘“_». ,
(0,0, 7, = —10) = —1.5086
a7

Then:

A=1.1659, B=15191, x=78.960°

6. The Right-Hand Side Poincaré
Map

6.1. The continuation of the
reference solution X tot> 0

As one sees in Fig. 6. the contimation of X; to
t > 0 traverses first the z-axis and then approaches
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Fig. 6. The continuation of the relerence solution gy (1) = ,\';__I:T]_.":'l";l'q tot >0,

the reference solution Xp as t increases, oscillating  obevs (if £ > 1) the mequality:
aronmnd it. We deseribe in the following. this behav-

e T o dE AN "

ior in more detail. 8% < const 2R g8/ (171)
:‘l'r.' :‘f.rr_ ;

Theinterval 0 < ¢ < 7?8 from which one concludes that E{7) and thus Ay(7)

are bounded at t = e/, Clearly, the same is true
for all solutions starting in a disk of radius €™ (or of
any finite radius) around (Aw(0), dAy/dr{0)). Here
0 is a time in the boundary laver region (typically
0 = 10).

The initial values of the solution X; at 7 = 0 are
{-:J-"xr,‘r,r‘{(.l.j..-_‘]""'\':fr,rf_ JdT(0)) a2 cl/8(—0.67T7.,0. 472).
In the limit € — 0. the boundary hmq equation

tf I}
ff.'

+t =7 (168)

by 91.45.190.167 on 03/21/13. For personal use only.

The interval 7¢*/® <t < 7/2

admits the symmetry 7 — —7.1p — —iji as a con-
sequence, it is true that 5.(7) = —nr(—7). where  As in Sees. 4.1 and 5.1 we write for AX(f) =
L. g are the solutions behaving like —71/3, 71/3 :

as 7 — —oo.o¢ in turn. Therefore, in this limit,

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com

n(0) = —nr(0). :f?}f_ff:f?u"'!_}"ll = ff!};;,’::f?{'“'ﬁ (ef. AX () = M'.‘H‘f—'—ﬂ.'.;lh {172
o : G a0y - } . - = - N = | b X ! - 1 I-;IA) - A =
Sec. 3.3, For t > 0 (and any = > 0). we denote X

An(t.2) = np, — ng; it obeys the equation:
with #p given in Eq. (84). Note: In the rest of this
d*An - dAn section we shall drop the subscript “R” on O since
dr2 S dr i SI‘PH'A” it 15 clear that we confine ourselves to the fime inter-
o R G o val [0.7/2]. The subscript =L is appended to quan-
+3nr(An)" + (An)” = 0. (169) tities related fo the continuation of + > 0 of the
left-hand veference solution X {t) or to departures
from. it
The function g g obeys:

With the same argument as in Sec. 4.1, Eq. (103)
we verify that the energy associated with (169):

.1 fdAng 2 3 ey
E" I o= 73' (?) 7 -—J;H(_\f; :;9’; + u],r il 1+ :I.HF}) )+ F’r(fd’} J‘i.h'
4 (An)? it
+ nr(An)° + - i“ (170) + ;Fru[{:f}—)c_f"}{.”: 0 (173)
£ -3
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where (cf. (96))
A/ 164m1 o T
£ exXpPI—IT) e
ki) = = bl o (174)
A X 32 3/2 b L
SR e

Xpt) = .;-']-""::,rfguffﬁu and ¢(#) is given in (90) with
the interchange —X; Xp. As in See. 5.2, we
move over to polar coordinates:

wr.p= Rp(0)cos(0+ op(8)) {17Ha)

divy,

= —Rpsin(f 4 ¢ (0)) {(175b)

b
and  obtain  equations  completely  analogous
to (119a). (119b) with the change i — —k:
dR;  glO)R.(0) . "
= sin(27)
b 2 o
?{l,'ﬁjﬂ"f (A) . .
+———=""(s8inz + sin 3z)
A'.;\H_‘,.BR.L(H;.” o sin 4z .
+ — 1 sin 22 + 5 (1706a)
o (6)
#;;; ” “(1 4 cos22)
1 ; :
IF\H‘} VR (8)(3cos 2 + cos3z)
e ] 2 J.
+ ROV R (0 —|—)ru- +-um4
(176b)
with » = 0 4+ ¢p(#). We imitate now the argu-

5 coneerning averaging and “remove”
first the E(dy in ( lTGaj. {170‘})_} 1)_‘\' a
transformation of the dependent variables similar
to Eqs. (121a). (121b). One has to realize that,
although the equations are similar to those of the
the function k(8 1s of O(1) when

ments in Sec,
terms i

previous section.
t is of O(e*?)
Q") (f. Eq. (117)). However, it is monotonically
decreasing with @ and arbitrarily small for large
#. According to Appendix B. the inversion of the
transformations (121a), (121b) at fixed 7
possible if 7 is sufficiently large.

We obtain a set of equations for the funetions
Ry .o very similar to Eqs. (122a). (122b). The
mitial conditions at 7 are different to O{1) to those
for Ry (#).0p0 in (176a), (176b). The boundedness
of the solutions of these equations is not immedi-
ately apparent since k(6)2 &~ (8g/60)* is not inte-
grable (clearly. the integral over k(#)? is finite for

18

in opposition to (#) which is of

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

finite = but diverges as = — 0). We perform thus
a second transformation. similar to (125a). (125b),
which separates off a term (—=7/24) Ry (8)2k( 0)2) in
the equation for o, (8).

We denote:

(LT

-
i L Py

D ()= —ﬁ / VAR H}Zf\'(!’ﬂ‘):f{j‘_
e ”0

Contrary to the phase @, of Eq. {131), whose mag-
nitude depends on the ratio =7 /413 the value at
A(m/2) of the additional phase ®; z(6). Eq. (177).
appearing for ¢ = 0 in the oscillations of the exten-
sion of Xy (1) around Xp(t) is truly divergent as =
vanishes. Using the estimate:

0<t-<

1o

t<sint<t.

ia-...'| =

verifies that:

/” - ;\.‘I"H",lzﬁfff s !

=38 | ”rf £ 1/8 I 1/3 ]_].1 i (i‘)

" exp(—2u) du
X —
Jo w3

—_— ()I: ﬁ N | .:II: I..':l -

a1ne

&

(178)

Asin Sec. 5.2, it turns out that dR; I:f is very small
for large H and thus we expect £y (#) to approach
a constant value Ry, = Rp(t{#) = ﬁ.,.f'i*'}, If this
value is nonzero, the additional phase ®; 5 is indeed
divergent as ¢ — 0. Now. the fimetion X (t) (and
thus 17.(#)) still depends on the value of
the corresponding values R ¢, for which we write
for clarity Ry, (). In Appendix D we show

£, =50 (,111

Lemma 6.1. As = — (. the values By ¢(s) tend to
a limit Ry p(0). This limit s obtained by soling
Egs. (127a), (127h) m'ﬁ': —h(#) replaced by k(0).
Eq. (174) where ng(f.2) is replaced by noop(T(6))
of (64a) and ~ is set equal to zero.

]

For v = 0 we obtain in (174) k(6) = 1/np(0)*>
1/7(6312. A munerical evaluation leads to R (0)
0.84. If we accept this as a “proof” that Ry (0) = 0.
we can state

e

?P

Lemma 6.2. The value of the secular term &y, r(8)
flf (L)'lif = F,J"Ij;l ,-'_:.,- ()I: _‘.:—J {I
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We define the “rest phase” left after the removal of
the secular term as:

GLiP) = or(0) — Bpp(A). (179)

This “rest phase” is also s-dependent (so that we
should write op -(f)). however, in a “harmless”

!

sante aremmnent leading to Lemma 6.1 we show in
Appendix D:

manner: let o (H{0) = 7/2) = o (). With the

Lemma 6.3. As ¢ tend
to a limit ¢ L.e(0). This limat s obtained by solv-
ing Egs. (127a). (127b) with —h(#) changed to
k(O) of (174) with the sanie replacements as in
Lemma 6.1.

— 0. the values o ¢(2)

J

To conelude. taking (172) into account, the contin-
nation of X (t) tot = 0 oscillates avound the vefer-
ence solution Xp(#): the departure from Xy reaches
the value 0.84%™/2+3/16 gt ¢ = 1 /2; as follows from
the definition (84) of the variable #p. the munber
of oscillations with frequeney proportional to Xg(t)
increases indefinitely as = — 0 and there is an addi-
tional phase, which also inereases indefinitely in this
limit, as shown by Eq. (178).

6.2. The variational equation
around X (t) for t> 0

In See. 5. we have seen that all those solutions of
Duffing’s equation which start at { = —7/2 in a
disk of radins A=7/2H3/16 around the left-hand side
reference solution X (1) land in a disk of radins =7
around the values (1, (0). dn, /dr(0)) (cf. Sec. 5.4,
Eqs. (166a). (166b): their departre from Xi(t) =
-L/%,.(7) is denoted there by /®u;(r). For t >0,

we consider the departures from Xp(t) = '/ (1)

up(T)=ur(7) +nL(7) — nr(T)
=ur(7)+ An(r) (180

with An(7) of (169). In analogy to Eq. (172), we

write:

wif) "t
1/2
e

up(f) = (181

and define R(0).0(#) in analogy to Eqs. (175a).
(175h):

w(f) = Rcos(f+ o) (182a)

fos
e —Rsin(f 4+ o).

(182h
dd L820)

The right-hand side Poincaré map around Xpg(#)
may then be written as

PR : (”fef“'_‘.n. d””f!ﬂ)
dr _
= (R (f.:y_;. — _))” (f.;y'; - _;)) (183)

Sinee we are interested only in a small neighborhood
of the point (Anp{0). dAn/dT(0)) =~ (29,.(0).0), we
expand the Poincaré map in a Taylor series around
it: I(r_'JLIJ.- (2) = or(t(f) =m/2, ¢). ef. Eq. { J.TEIIJ:I )

| £
=

' dup
Pr | ug(0). i (0)
\ ;h_ \

: IA
= (Rp.s(2), 0L.r(2)) + DPR (L\m“ ). - ] & u?')

aT
s OO
ot {.'Jf‘I:“:I_ oy +---

where  (up(0).dup /dr(0)) is.  according  to
Eqs. (166a). (166b). O(=""). We write the map-
ping Pr as a composition of three transformations:

Pr=FrocTaol

{184)

{ 185)

given hy:

o dup Codug
Fi: | up(0), () | = | urim). (7o)
dr . dr

(186a)
i . it gz
T ¢ (r‘_f}{[ ).

s

'I'Tn]') = (R{0(10)).0(0(70)))
a7 : ' :
(186h)

Pr : (R(0(m)). 6(0(70)))

| 186e |

where g is a “time” in the boundary laver already
introduced in See. 6.1 following Eq. (171): it is for
convenience also chosen as origin of the variable 0p.
Eq. (84). Corresponding to the composition {185)
we write for the derivative:

IDIIF"R (AJ’} { { .:| 3 d‘};_\” [ [} :I)

T

' Ay
— DP¢ (Ry(ro), 61.(10)) o DT (Ar;c_ o), —(70 )
aT

1.
o DIF; (ﬂ':j[l”i)_ h;_\—”( U}).

aT
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The elements of the Jacobian matrices appearing
m (187) are the values of solutions of the varia
tional equation around X, (#) for ¢ > 0 at 75 and
t = 7/2 with appropriate initial conditions. We
evaluate next these elements.

The interval 0 < t < 793/8

The variatiomal equation around X (1) reads:

. .
A% ) ddu . - p—
TECE + 2" — 4 ._;'.?”‘I". T:I_J\H =1, I:J.Bf\,l
H'.' Hi‘.'

On the bounded interval 0 < 7 < 7 this equation

has bounded solutions: moreover. as ¢ — 0. these

solutions tend wmiformly to those of the equation
obtained bv letting formally = = 0 in (188). This
means setting v = 0 in (188) and replacing 1y, (7)
by the contitmation tof > 0 of the first term nooz (7)
in the expansion (74).

The rapid oscillations of 7 (7) for 7 > 0 (see
Fig. 6) lead to solutions of Eq. (188) with a more
complicated behavior than those on the Lh.s.!®
Whereas the image at 7 = 0 of the cirele A = 1
att = —w/21s a (torsioned) ellipse (see Fig. 5). the
deformation of the latter under the flow for 7 > 0 is
considerable, see Fig. 7. which shows the image of
the (approximate) ellipse at 7 = 0 {crosses) at times
7= 3 (boxes) and 7 = 10 (diamond) for values of
V% = 0.003. k = 0.04. The origin is now chosen at
(nr(0).dnr/dT(0)).

eps38=0.003.k=0.04

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

T he transformation T

With the help of Eq. (181) and the definition of the
variable fp, one verifies that the Jacoblan of the
transformation:

du g duw
T1 ; (”H- T—H) (To) = (h“. T) (7o)
T

detDTy = L,_ exp{—7 ).
V'3

All elements of T4 continnous at == 0.
The supplementary transformation' T2 : (w. dw/
dfy = (R.o) given by Eqgs. (182a), (182b) has a
Jacobian equal to —1/ R{1p): we assume munerically
that R(mg) £ 0: it tends to a nonzero value Ro(m)

as e — .

are

A e o= | FE
et <t < 7w /2

The interva

The Jacobian matrix DI is more complicated: it
contains elements which diverge as ¢ — 0: the rea-
sonn 1s that the contribution coming from the varia-
tion of the term @7 g of (177) (see Lemma 6.2) is
divergent in this limit, It is thus convenient to study
first a “reduced” transformation:

P 2 (R.o) (1) = (R. ;.'_J',I (T = %) { 189)

where ¢ is the “rest phase” defined for each solu-
tion in analogy to (179). by subtraction of the

r3
OO0
a® =
. 800,
& 0 © %940,
¢ e
00 < 1
Ry T o o
*“.ﬂ’ Tt 2 4
hd L+
: { — , ,
2 “, 15 " AT 0 05 1
b4 wig e
ﬁn“n Fo
0g o
Bg O pooo
Doy go
a a a _ﬂ % o @ o
-3
+ R . tau=0
[ R - T . B . R - T - | fau=3
o 0 0 ¢ 0 o tau=10
[Fig. 7. The defrmation of the domain in Fig. 5 at small 7 > 0.

lﬁ’]‘ln‘ corrections to the WK formulae are determined 1':-.\' the nction gl {analog of [‘:{1. { !)2_] ) which contains the first aned

second derivatives ol the rapidly oscillating np (7).
Op —qmoaT .

1330006-30

21.03.2013 19:32



THE ONSET OF BIFURCATIONS IN THE FORCED DUFFING EQU...

The Onset of

“sectlar” ternt. To this transformation. we assoeciate
the Jacobian matrix DPf, . Related to it. we show:
Lemma 6.4. The elements of TP are

bounded and continuous with respect to = as = — 0.

matrir

Proof. The proof is similar to the one in

Appendix D and is based on a qualitative study of

the solutions of the variational equation around the

solutions By g, oqp.0 of Eqs. (DA4da), (D.A4b) and of

the solutions Ry o oy . of (D.6a). (D.6b). in turn.
According to the dhoice of initial conditions. these
denoted generally by d R(#). da(#) in the
following. may be identified with the partial deriva-
tives OR(0) /IRy, do(0)/OR, (if SR(0) = 1.d0(0) =
0) or GR(8) /Do, do(6)/dog (if SR(0) = 0. da(0) =
l}. where L'g;. p are the initial values at r‘}{ Tl-,} ={);

The proot consists of three steps: (i) We show
that. if = is set formally to zero. then the solutions
(SRY}(6). (56")(6) (in the latter the “secular term”
has been removed. see (200) below) of the varia-
tional equation around X;o = nor (7)Y ® approach
a lmit as 7 im-n\eww imh\[iuirvl_\': (ii) For finite ¢
we show that. if 7 @ for some a < 3/8, the
solutions (§ R)(4). ( r_)r_-';)lf_r’a‘,u differ by arbitrarily small
amounts from their values at t = 7 /2
appropriately small; (iii) We show that., for an inter-
val of values of .70 < 7 < £ 77, with 3/8 >
the difference between the solutions dRY(#). 66°(#)
(corresponding to ¢ = 0) and §R(#),56(8) (corre
sponding to a finite £) may be made as small as we
wish. by letting ¢ be appropriately small.

In proving (i). we append for clarity to all vari-
ables related to the variational U(lllz'il'illll a super-
seript <07, recalling that = is set equal to zero. We
assume we have “removed” by successive transfor-
mations the terms of (_)(H’”‘l*u and O(dE"/df) of
the dependent variables. (£°(#) = 1/500(#)*?) and
consider first the variational equation around the
solutions Rapo.000.0 (Egs. (D.4a). (D.4b)):

;f_.:: ) R[f )

)

solutions.

. provided = is

8> o

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com
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= A”[J".:tq".' : Ry o) JTjJ (z0) (8R%)(0)

+ EYO) : Ry olé) 3?-_)( 20| e’b_f_';“_‘ln:_r‘-)"_‘lu + -
{190a)

A&y T . .
= 5(KY0)2R;, 0(0)2)

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

hiwrcations an the Forced Duffing Equation with Damping
where Po. Q12 are trigonometric polynomials of
vy = 8 + o5 o and the dots stay for terms which
fall off more rapidly with 4. It is velevant that
the polvnomials flu z0). Palzg). Qa(z0) have zero
meann whereas (Jlu =) contains a constant ( “sec-
ular”) term. From the form of the transforma-
tons leading from Ry g.op0 to Rypo.oq00 (cf.
Egs. (121a), (121b). (123a), (123b). (125a), (125b))
we see that:

fiﬁ’“l \l_ﬂRLJ +() .LU\ IRE!

Fr

+805(0)O(K°(8)) (191a)
fi{_')“lirq:l = I’ERLJI:H:I(')I: ;,'Uli .:I :I
+d05(0)(1 4+ O l"'kr‘} (191b)

In (191a). (191b) the terms denoted by O(kY) may
he read off (123a). (123b): thev contain trigonomet-
ric polynomials with zero mean. It follows that the
variation of the secular term in (190b) is

S(KY(0) Ry o(0)%) = 2k°(0)* Ry o(0)SRY(0)

+ ( @] { 2.-(]{_6?_) 10¢ JU ( f_ 192)

These terms also give the leading order (the terms
with the slowest falloff in &) of the coeflicients of
dRY(9). d0((#) in (190b).

We show next that the solution AR{(6) of
Eq. {(190a) is actually bounded as § — oo and the
solution :‘Se_';':f of Eq. (190b) obevs ;S(__;"f = (_)lfb']";'lj in
the same limit, We consider to this end the Lyva-
PULOYV eXpression:

‘-\Il)lflll(?‘l‘l_
Hl,z
where r.s > 0 are two parameters which mayv be
chosen Lli‘i‘l‘\' Denoting by ap(#). ap(f) and bp(#).
hp(d) the coefficients of f’)f\l'.#.‘!r.;] in Eqs. (190a).
(190b) in turn. we may write. after taking ({192)

nto account:

1 dL N
- = f'-’.fjfl,'g:lliﬂﬂ._lf‘,lj

2 db
Lt )
+(”fj"9 —|—t-. ’H J) r’)[il:llif\:‘_'}[_;'ll

L= r}_R_(]ll'H;l _'Il2 {193)

rI alr(c)i‘l s o J_ Iri_: I::I'll‘z

o 21 s (o) — sl (104)
)y V3 . e 0y A
+K%(6)" Re.o(0) Q1 (20) (R")(0) Using now the inequalities:

+ fmul ) R; al#) (,22( Z0) (fi{:}[]:ll: gy 4+ - - .T _ : ."T
R < (/= |00f] <8/ = (195)
(190b) \ r \ 8 Y
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and the fact that the last term in Eq. (194) is neg-
ative. we deduce:

u’L
:Nﬁf =

'_

2L (|HH|H | + \ ].-'1|{””:.{7]}|

{ 196)

For large 0 the dominant termn is the one containing

[bg(8)]/01F as one sees by reverting to Eqs. (190a).
(190b) and (192): it falls off like 1/6. Inequal-
ity (196} can be integrated to vield

L < const x 920V € = sup|br(8)|6°"

We may choose r and s so that the exponent of ¢ be
2d. with 0 < d < 1/8. It follows then from Eq. ( 195)
that:

|;i{_}[,]\"[9':|| < const x #4tI/4, (197)

We now return to Eq. (190a) and integrate it from
an initial value #, to some #: sinee ri(z:"f obevs (197),
the integral over fi(_'?_ff is convergent and we dednce
from Gronwall's inequality that:

] "
dRY(#) < const x {\_\'p(/ |u;f[r‘)‘)|.er) < const,
Jo
{195}

Thus dRV(#) is bounded for all 8. Further, inteerat-
ing Eq. (190a) between two values €, and 6, one
sees that |’;"le':9~.- T fiﬁ'?(ﬁw )| =0 as (6p.0,) — o0
and thus SR{(#) approaches a limit as # — .
This limit is approached like 1/6Y14 (the dom-
inant term in (190a) is the one containing hu”‘
From (191a) and the fact that k%(@8) ~ 1/8%%. i
follows that, if the exponent d in (197) is less rh:m
1/8. R"(#) itself approaches a limit as § — ~c. This
approach is at least of O(1/9Y5-4),

We  applv next Gronwall’s  inequality  to
Eq. (190b). after taking (192) into account:

-

|x§ ¢ 9 < Sup

)
/ z:“aﬂ':IZR;._c_.t_Hﬁ‘.”*ff'i”J“’”‘
J0

B 1-\.‘([_“1(("1.&15? X /
JO

< const x 6/

&)

F’"’“(_ (7 :I: Lde )

(199)

where we have nsed the fact that the integral in the
whereas the factor i front
in view of Eq. (198). As

exponent is convergent.,
is bounded by const x #Y/1

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

a consequence of (199) we may assume from now on
that the small exponent d = 0. We define further:

f’;e_?‘f (#) =9 f_'}t; (H)
|

frrg ;,-'-J.:

l_) ”{}[{“"{}”I

szff;,_(. (200)
Taking into account Eqs. (191a). (191b), it is e
that:

;f.fi(__';cf{ )

|:H:| =+ ('jaI:HH c"(l 0 i H:I
dtl

=750
= rpl # 1o i )

cr(B).cp(8) = O(E(BYY).  (201)
We integrate Eq. (201) from an mitial value 8; to #
and use the bounds of Eqgs. (198). (199) to deduce
that 809(0) is itself bounded and has a limit as
f — oo, We “original”
tion of the defined byv:

CAall 110W revelt To an varia-

“rest phase” 06"

i -1
3o = o + T{T" / KOO R, o(M)ORY(B).  (202)
=l

Since 8¢ is related to 80 hy (191b) and 66 defined
in (200) was shown to be bounded, it follows that
50" is itself bounded and has a limit as § — ~.
which is approached like 1/68Y% (or 1/7'/%). We
denote the limits of d RY(f) rm”u #) hy dRS, r}';"}.

We now turn to point (i) of r.hw proof and show
for finite ¢ that, if 7 > 7 with 0 < a < 3/8
the difference between dR(6(7):2) = dR{#) and
its value at #{t = 7/2) becomes vanishingly small
as = — 0. The same is true for da(0:2) = do(H)
of (202). This is done by repeating the argumment
but using the complete function k(0) =
E(f. =) for finite = and correspondingly a modified
L_\ apunov funetion £(64):

{1‘[ 0Ve;

) O 1 H}
L(0) = r(0R4(0))* + s——5
() [ReN SR ll =+ (-:[)I !{7‘ 2
-
$(o) = / L"(H)QH_TH. (203)
The function ®(0) increases like 01/ for T < 1/

and then stays approximately constant at values of
O(1/~Y3y. All arguments used above for ¢ = 0 may

be repeated with the conelusion that
|f}- Ry(d :|| < const
(204)

|00y | < const x P(H) < const x gl/4
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and that the differences to the values at + = 7/2
obey:

B lr— T (1' _ _))‘

= ) — {i:?‘l (f = l_li)

Returning to the original dR(#), d¢. these bounds
are turned into:

(205)

< C‘ v - a3

fsf._'?.J (T=E¢

We turn now to point (iii) of the argmment and
compare directly to the values of dR(#, 2), do(h. =)
with those obtained for = = 0. To this end. we
revert again to Eqs. {190a). (190b) and (201) writ-
ten appropriately for ¢ = 0 and a finite small =
value. We subtract them and using notations like.
e.g. A(ORY(0)) = dR,(0.2) — SRY(0) and similarly
for ﬁ(ﬁa;}.ﬁs( doy) and also Aap(f)
ap(6.0), ete, (of. {196)) we obtain equations of the
form:

= ap(b. __.':I —

IA(OR,) ) __ -
{l‘-‘TH = AJII?I:H :l.rhrfl(ﬁ:u =+ A”J":g‘."”’f_'?_] (6)
E
+(firjfl:'g:l.ﬁ-’i]—]'.lI:-H\:I —+ ”T.,,I"H‘:Iilrsf-” I:.H.:I
{207a)
IA{dD,) _ )
% = AI?}{':H:I{)R]IIHII —|— Ah{,( Hj{)u]l: r‘)‘:l
[

+ L}]T.l'g'l._\.fifl']l’ﬁ'l - .IJT;IT-H”',I.-’A{‘;(_'P | I'H'l

(207h)

These equations are an inhemogeneous version of
Eqs. (190a). (190b). The solutions of the homoge-
neons part have been shown to obey the bounds of
Eqgs. (197). {198). By the method of “variation of
the constants”. we may write qualitatively a gen-
eral solution of Eqs. (207a), (207h): since the ini-
tial conditions are AdJH(0) = Adoy(0) = 0 (we
are interested in those solutions that obev. e.g.
OR/OR, (6 = 0) = 1. independently of ). we obtain.
e.g.
-
2

ASR(B) = GICAIG !
J0

— )‘.’I: g I r}_R_[IZ ) | |:' g ) :le‘ﬂ'}f { o R L) i f )

<
— / Ir fﬁ' |r rL).‘f .‘II |: ri{_} (1) ‘II III Hh.l
J

]

— fol0")(BRM)(#))d6' (5R™))(8), (208)

where fp(#). f,(0) represent the inhomogeneous
terms in Egs. (207a), (207h) and dR'Y, do', i =
1.2 are two independent solutions of the homoge-
neoils equation with a wronskian equal to unity. As
an example of an estimate of the differences Aap.
Abg. ete. we consider:

. 1 exp(—~T)
ALH(_H} =0 (.t — m)

=0(¥*), T< = (200)
These differences are to be evaluated at fixed 4,
i.e. the values of 7 appearing in the two terms
in (209) are a priori different; however. as shown in
Appendix D (ef. Eq. (D.12)) it is enough for coarse
estimates to use in both terms the value of 7 corre-
sponding to = = 0. if 7 < = with § < 3/8. Using
Eqgs. (197). {198) one verifies that:

fr(8) = O3, f,(8) =0(¥r).  (210)

With this we estimate from Eq. (208) and its ana-
Ii wgie ful‘ .ﬁfi!.)_]:

ASR (0 = O e3/4gT/4 I,
' ' (211)
A{S}‘_'}J I\[(JJ;I = () |" _-_':{-"'; ! 92}_ .
Taking into account Eqgs. (191a). (191b). we ver-
ity that these estimates hold unchanged even for
ASR(B). Ado(8). Using Fe. (202), we obtain:

ASH = O 3/ 137__..-;{:}_

If m < g7 {H < :___—.1.:'..':'..-:“ AdR, .ﬂ.{‘_t_i tend to zero
with ¢ provided 3/4 — 28/4/9 < 0; this is fulfilled if.
e.g. 4= 1/5. For any choice of o < 1/5, the dilfer-
ence between dR. do(7) and their values at ¢ = 7/2
vanishes as ¢ — 0 (of. Eqs. (206). (206)). Aceord-
ing to (i) 6R"(6). 50" (8) approach their asymptotic
values like 1/68Y% and thus the differences to these
latter are O(*/%) at 7 = =, We can thus conclude
the limiting values (0R(t = 7/2).6RY). (do(t =
7/2).80") also approach each other as = — 0. This
ends the proof of Lemma 6.4.

6.3. T he mapping DFg

The first derivative DPR of the Poincaréd map is
obtained from the values at 7 = 7/(2e%%) of
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two special solutions dR(#).do(#) of the variational
equation. with initial conditions at 7= 75 : (3R =
1.d¢p = 0).(6R = 0.6¢0 = 1) in turn. Accord-
ing to Lemma 6.4. the values dR/IRy(7/(2%%)).
OR[O0s(7 /(22 %)) approach as ¢ — 0 the asymp-
totic values ':{)f{l,-'flfjf{(];'”. [ Uﬂlf-"{)(.'a‘(_.:li'\ of the solutions
of an equation in which ¢ was set formally equal to
zoro (we recall Ry = R(m). 00 = o(70). with R. ¢ of
Eqs. (182a), (182h)). These values turn out to be:

A0 aoR\"
SET N BBy

‘) 8]
& = 0.0,
Jog

for the ARV itle values of the
“rest phase” @Y

= 0.96

{ ]
—
%]

A0
4 J):

The same is true
derivatives of the

]

o
( -;_)Rf_,

= . 0
do
Bl =108
i

These values depend on the point 7, which, for
munerical convenience. is chosen sufficiently laree
so that the asymptotic form () &~ 7Y/ be valid %
It turns our that the convergence of the variations

{1 -
B =

2125

(213)

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

SR(A) to the limiting values is rapid. that of the 8¢
is. however, very slow.

On the other hand. the derivative do/dRq(#)
diverges as # — nc. This shows the origin of the
asvinptotic circle map given by the Dufting equa-
tion: the small disk of radins "7 is “stretched”
in a 7-time interval of the order 1/v in a rect-
angle in the (1.¢) plane. highly elongated in the
o-direction. In a r-interval of O{1/~). friction plavs
no role: this stretching is entirely “Hamiltonian™:
the volume in phase space is conserved (the trans-
formation (182a). (182b) is not canonical: for a unit
Jacobian., one must multiply 8¢ by R the area
of the rectangle is multiplied by a factor R(r =
1/v)/R(mo) = 1). Clearly. when ¢ is “wrapped”
back on the unit cirele, it will possibly cover it
depending on the size of the mitial disk
than once: it is this mapping of the crde into
itself whieh leads to the chaotic motion observed at
staller values of the damping.?! The arguments of
this paper show that it must be ohserved at inereas-
g values of the damping as the forcing I inereases
indefinitely.

In Fig. & we show the image of the circle A = 1
at t = —7/2 in the (w.dw/d#) plane at ¢+ = 7/2
for =3/% = 0.003.x = 0.04: one sees the extreme
angular stretching (in the ¢-direction) caused by
the diverging derivative do/dRy. The crosses show

ore

epsSS:O_DOS_La{nbda:T_FO_m

.—:;._.'.._—'_—'-::E';_“_h
//;//,’/ 08 ":‘\\}{\
p S,
/K/ -.,\\\\\\
Vi 05 R
Pl SR
/
Y /4 o4] \\
.f‘ ."'/ l\'\

/ 0.2 4
H / I|I
F : : L

7 '|I 05 5 05 [
\ )
\ 02 /
\\ /
‘ 0.4 /."f
0.6 //
. /
=W 08l —
1
Fig. 8. The image of the circle A = 1 at t = — /2 in the (w, dw/df) plane at t = /2.
200 = 10 is a possible choice; clearly, its value drops out in the final results.

21 i : Fr ; g : ; :
= As is shown in Sec. 7, chaotic motions appear long before the circle is <f'}1[l[>li‘.|i-‘ll\" covered.

1330006-34

21.03.2013 19:32



THE ONSET OF BIFURCATIONS IN THE FORCED DUFFING EQU...

Int. J. Bifurcation Chaos 2013.23. L ownl oaded from www . worl dscientific.com

35 von 64

by 91.45.190.167 on 03/21/13. For personal use only.

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

The Onset of Bifurcations i the Foreed Duffing Fouation weth Damping

eps38=0.002.Lambda=1 k=0.02

15 1

Fig. 0.

the approximation offered by the variational equa-
tionn (for OR.o/dRy. o). Figure 9 shows a situa-
tion at smaller damping u;_.f"'J‘-""” = 0.002. 5 = 0.02)
where the stretehing exceeds 2. At smaller = (larger
foreing) the arms of the spiral approach each other
s0 that asymptotically the disk A = 1 is mapped
imto a very thin ring at ¢+ = 7/2. The points show
again the approximation of the Poincaré plot by the
first derivative; feeling supported by this numerical
evidence.”? we do not discuss in this paper at all
the corrections due to higher terms of the Taylor
expallsion.

We evaluate next more carefully the derivatives
o IR O(T/2)). (Do ]/dog)(B(m/2)) for finite, small
values of =

do 0o
Ry d R

- /2 3 ‘)
_;/ Mmefm%Hﬁm
i

12 /o dlg
Both the first terin and Ry _(#). (8 R)(#) mnder the
integral sign are bounded®® at # = #(7/2). The
leading behavior of the phase is determined by the
integral: according to Leninas 6.1 and 6.4. the val-
ues of Ry -(6(7/2)). dR/ORs(6(7/2)) have limits as
e — 0, denoted by Ry ;(0), A% (vel. Lemma 6.1

The image of the circle A= 1 at t = —7/2 in the (w, dw/di) plane at + = 7/2 at smaller damping.

contribution m (214):

a6 7 a i e
S, et H(0)AL (8= di

| A

/(22358 ¢ \
7w/ (2e ) expl —._._)"‘_,'TJI
COnst X _.'_”r'n'_

N TZ.-H
_ const (215
~1/3 | o
which shows explicitly the divergence as = — (0 in

the factor 1/4Y3. It turns out that the factor nml-
tiplving 1/4'/% has itself a slow logarithmic depen-

dence on ¢ and approaches a finite value as ¢ — 0

(= 1.80). Figure 10 shows the s-dependence of

the quantity Cy(z) defined by comparison to {215)
through

(%):Lifﬁ (216)

AdRy J v1/3 L

The remaining s-dependence of Cy(z) is neg-
ligible in our range (=77 /443 &~ 1). The order of
magnitude of do /R is correctly reproduced if the
mtegrals are simply cutoff at = = 1/9 and the
exponential term in k() is ignored. For finite =
the expression in (215) should be multiplied by

i

(1 + O(=7)) for some small s, which controls the

and (212)). Thns we may write for the dominant  approach of dR/ORy(0(7/2)) to A% as = — 0 (see
22_1"l1{-> agreetient is better than warranted |'§V the estimates of the paper.
] 7/2) means the f-value corresponding to t = 7/2; it is O(1 ,.f"-:J'Q_].
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[Fig. 10. The

to) the corrections to the dominant term and eval-
nate. for finite &:

H(m/2) g AR
T k(6)? Ry, ()=
J0 - ()LIJ

R T ——
-:)R'”( (__3));39. (217)

In Appendix E we show

()

— Ry 4(e

by 91.45.190.167 on 03/21/13. For personal use only.

D:,'T, as £ — (. This is in principle a finite (uantity
which must be added to the contribuation of the “rest
phase” (202). However, since Ry -(#). OR/ORy ()
are, apart from small oscillations. u.‘marka})l_v con-
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stant, the contribution of (217) is &~ 0. The same

arguments may be repeated for the pm'rial deriva-

a5

tive 9o/ ddg: the leading term is O(1/~Y?) in anal-

ogy to (215):
o TNy T V3 EX 5. o i
do (H (E)) - _Eﬁr (_5) R, (0)dz

Co(e = 0) A%
ii1/3

with A} of Eq. ( . There exists in principle an
ad lmuual hmmdml term, which tends to a limit
}L as = — (. It is the sum of &0 /doyg.

\

of the analogon of (217). which is =~ 0. To conclude,

previous section ). We compute next (upper bounds

that this tegral is
bounded and even has a limit, which we denote by

which
approaches (slowly) the value BY. Eq. (213) and

14 16 18 20 22

log10(1/eps)

s-dependence of the quantity Chis) of Fq. (216).

rhv map (Ro.op) = (R(6(7/2)), o(6(7/2))) is given
w (Rop. oor, ave the values of ( Ry, ¢p) d.‘-r-llll].i'—‘d v
_-Y;, at mp):

+(2) + Ar()(Ro — Rop)

+ 1!“'\1:”‘”'1 — Oor) —+ lﬂglll‘l orders
(219a)

#
4+ <_% + C‘Pl:: 2 'J) {(,'),:_1 — f.I}OLJI
+h.o. (219b)

where the higher orders are O(=257) multiplied by

the order of magnitude of the second derivative. The
terms Ap(s). Ap(c) approach the values A%, A}, of
Eq. (212). The terms Cglz) (“;ru'f'u m'r* the sums
of the corrections to the ]mdm; 1/ b term given
by (217) (and its analogon for r)Par)mnl and the con-
tributions (213) of the “rest phase” ¢ in (214). As

= — 0 these terms approach (slowly) the limiting
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values (213) given by the ¢ = 0 equation:
Cr(e) = + DY, ~ By,
C\pli._'_‘,l = B + Dy ~ B
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(219h) contain the matrix ele-
ments of DPf. Eq. (187). The complete Jacobian
DPR evaluated at (An(0). dAn/dr(0)) is computed
by performing the matrix multiplication i ( 187).
The elements of DP; are in the limit ¢ — 0 given
by the solutions of Eq. (188) with v = 0 and
0. replaced by NE00- For reference. for the choice
7o = 10 they are:

Equations (219a) and |

)
, 3
1

Aol thior(T0)

=l
g
[

= 1.111

g h ;J I

oy f fs %
f.):‘fm?ll Tl =
Jugy,

U“inf{"‘: ) 9970
Oy, e

The mapping DT for 7 = 74 is obtained from (181).
The dominant terms are:

IR T
g = ; = (0= 3) & (.43,
g, &
(222)
JR T R
fo = —— = — | = —0.247.
J2 gy ( 3) ‘

With this. the right-hand side Poincardé map reads
ief. Eq, (183)):

o duy
iz (0), —=(0)
( ‘f_ll ] F;r 1 |)

:(ﬂ.;ﬂ..; + ﬂ!};l“u—l—j; J{_'Hl—|—()|".-
tq(f—‘_)) HI ,u(||—|—;‘)1(_ (i )
("'
= = (ﬂ“j’l”l—i— ;7; ”‘rl‘]‘)

A= Ir]"f.._.'_ ||"._.'"] + AT { (._TJ <k ”' + ]
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H'

v

T

—~ (:ﬂ (0) 4

Uy =746 (%) —Or(T0) + o (

(’m (0)

5._

x cos(Uo + Pr(A) + Q) — (En’i (0) +F.,

( n‘) sin(Wo + &y (A) + m} + O +)
'_.) e C‘f'u'xn_—

( n.) sin(Wy+dp(A) + Q‘;.} + Ae"T { (Eni-{..{'n';.
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Bifurcations en the Foreed Duffing Fouation weth
g
]II% ))

) is defined through (175a). (175b)
it contains a “secular”, divergent term &y, p(#(7/2))
deseribed i Lemima 6.2 (ef. Eq. (177)) and a
“finite” term oy (7/2) which has a limit &y ¢(0) as
c — 1. as described in Lemma 6.3, Further, Ey. Fj
approach ag ¢ — 0 constants obtained from the val-
nes in E(l‘w (220), (221): Fom 1.02. By~ 2.11. The
term O(e267 /41 "”,u is (only (pmhr.im-wh ) justified as
follows: the second derivative of the Poincaré Iape
is expected to diverge like v~ /% as ¢ — 0, like the
phase ¢ and its frst derivative do. and is multi-
plied by terms of O(u2) = O(257): since — as may
already be ;appcnnur

Dumgnng

+ Eguy,(0) + Fy f"‘fn' +()(
(223)

where op(7/2.¢

we expect bifureations to
g (L3 35 O(1),
the same order of ILingllltllfli-\ as the terms IJ}.'(-‘('(‘(]—
ing it. However. for small =. the bifurcation pattern
is determined by the divergent terms (see Secs. T
and 8).

occeir when this correction is of

7. The Complete Map P and Its
Associated Circle Map

7.1. Themap P

We put now together Eqs. (166a). (166b) and (223)
to obtain the image of a point

" dw . ) :
P (.‘."_ .r_f?:l'-) = |"l_-‘u-< s W, —A sin ‘Dn.'.l

situated i a disk around (X (—-7/2).dX;/
dfp (—w /2)) wnder the mapping P of (80) u\\llh
the change t = 6 of the independent variable)

We mayv write it as;

) cos( Ty + ‘I’;_'.r.i\-:' + )

|“|) ("ll.“-",r_l]:f{'u —|— (I’Jf_ II;\J +£I‘,l

AV
LT
1' _ZKT
— (0] ) sin(Wg +Pr(A) + S!.} + O (—q ]I,.:{) (224b)

{(fl ““ + 7) ;
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where we have used the notation in (223). In the
region where =57 /~41/3 is O(1) the last two terms
in (224b) are both of O(=") and will be treated

together. These expressions are simplified by tro-
ducing M and ¢ through:
; < AP
k)r] I“ + ;Q—uli = \/Tm '.f:
v (225)
JVai = (0) = Msin€.

In Eqs. (224a). (224b) we wrote the A-dependence
of @y, Eq. (131) explicitly. The term 7 in {224b)
takes care of the minns sign present in the definition
of the half-period map P {cf. the definition Eq. (32)).
We perform next the . v=dependent transformation
of the angular variable in (224a). (224b):

Uop=x+7+0r (t_;) — (o) + oL (i,)

=

= Sy (226)
with which the transformed mapping P:
P=8"'PS (227)
reads:
P A= Ry 4(e)+ 0(e"™)
- 4+ A)) 05
cos| Y(e. 7. A)) )
X = P} X )
(228)
with the following notations:
B=CoMRy ;(2) — (229)

and
> HE ; m
Y(e, 1. A) =8p (—)) —fOp(m0) +Q 4+ oLr (;)
+ &)+ D A (230)

The first terms in Eq. (230) give (almost) the total
# — variation from —w/2 to 7/2 (cf. Eq. (162)):

Af = 'gff' (‘)) — erf': To) —+ Y

V3 & -
= —= |‘~Illf| di + Oq(e) (231
VE J—x/2
where Gg(s) has a finite limit when = For

small = Eq. (228) shows that, under P, A is squeezed
to values near Hyp(2) (as is seen in Figs. 8 and 9)

and therefore hv term Pz, A) gets verv cose
to ®p(c.v. Ry ¢(€)). The factor Ry ;() has a limit

\—“ i

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

Ry, ¢(0) as = — 0. ndependent of v (ef. Lemma 6.1
and Appendix D). The same is true for the quantity
M (el (225)) according to Lema 6.4, It is natural
then to expect that the ene-dimensional mapping
of the nnit cirele into itself:

IT: = deos(x + X (232)
with
Y=A0+¢; (i)) £(e. )
+®r( Ry, 5(e). &, 7) (233)

contains the essential features of the bifurcation
structure of the mapping P, Eq. (228) and thus
of P. In the following subseetion we present some
relevant features of this mapping. which is other-
wise well studied [Zeng & Glass, 1989: Collet &
Eckmann. 1983] (this is the standard reference on
one-dimensional mappings; however, the map (232)
falls & little outside the class of maps considered
there). In the next section. we discuss its relation
to the real Poincaré mapping of the Duffing equa-
tion P of (228).

Clearly. the mapping IT mayv show a bifurca-
tion structure in the region of parameter space
where 3 = O(1). This justifies some of the state-
ments made before concerning the orders of mae-
nitude coming into play (see comments following
Eqs. (224b) and (223)). Referring to the discus-
sion in Sec. 6.3. especially to that accompanying
Figs. 8 and 9, it is easy to give a “physical” rationale
h 1 the parameter J: in a 7-time interval of order

/~ the motion is (almost) Hamiltonian and the
nuunnl disk (ellipse) in the (w(0). du/dr(0) plane
with radius of O("7) is stretched into an increas-
mmgly thin filament of nereasing angular apvrmrv
wrapping itself around a cirele of radins Ry ¢(=).
The angular aperture increases at the rate #'/4 k_"f-
Eq. (199)), where:

In terms of 8 the T-time 1/4 is O(1/9%%) so that
the original aperture of O(="™) becomes in a 7-tinie
1/4 of O(=57 x 1/~4/3) which is precisely the order
of magnitude of 4 in (230). At 7-times larger than
1 /4 the angular aperture does not increase any more
considerably. but the area of the “wrapped” rectan-
gle decreases simply due to the damping by a factor

By gaFETC
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7.2. The circle map IT

In this section we gather some properties of the map
IT of Eq. (232). Clearly its features are periodic in
Y. From the definition of the latter in Eq. (233)
the dominant term for small ¢ is Af of (231) which
behaves like 1/,/z, i.e. like TV2 Thus, we expect
the bifureation pattern in the I' — A plane to have
at high forcing an increasingly better periodicity
in TV3. At fixed =, 3 decreases with inereasing .
i.e. with increasing A. For a comparison with “nor-
mal” bifurcation plots, we draw bifurcation lines in

a ¥ —(—/) plane.

(i) For 3 < 1 (high damping), the equation:
11 e |,-:|:. b -+ E) = |:. ;)_;—l:jl

has, for all ¥, only one solution y,. This solution
is a stable fixed point of IT since |[dIT/dx(x.)| < 1.
Even more.

Lemma 7.1. The solution x4 of (234) s the only
invariant set under IT of 3 < 1.

Indeed. |dIT/dx| < 1 for all . so that the distance
between any two 1. Y2 is contracted under IT if
<1

ITI(x2) — [ \1) IO [(vz — x|

sup
XE(x1.x2)
< (xz = x| (235)
Thus. the sequence of all iterates of any v under I1
converges (to ). (ii) If 3 < 7, IT maps the inter-
val (—m, m) into itself, so that the theory of iterated
mappings of intervals, as presented in [Collet & Eck-
mann, 1983] and [Guckenheimer & Holmes, 1983]
may be directly taken over. If ¥ = 0, the mappings
T1{ 3, 0} are unimodal in the sense of Collet and Ecke-
mann [1983]. The mappings I1{3, ¥ = —7 /2) apply
[0.7]. [—m. 0] into themselves and if' restricted
to these intervals make up a full family of uni-
modal maps [Collet & Eckmann, 1983, Section I11.1,
P 1?—1]. for 0 < [ < 7. Moreover, for all values of
Y., the fimetions f{y) = {3, X)(x) have a negative
Schwarz derivative:
f.-w 3 'f.u 2 .
f-’ — 3 (F) < ),
For unimodal families with negative Schwarz deriva-
tive there exists a sequence of values ) < Fy. ..
which accumulates at a value 3. < 7 and for

Sf=

which there exist superstable orbits of period 27,
For 4 = 3. there exists a {(nonperiodic) attracting
Cantor set for the action of TI{ 4, —7 /2). For larger
values the motion may be “chaotic” (with sensi-
tive dependence on the initial conditions). Thus, we
expect that chaotic motion oceurs in the Duffing
equation before (i.e. at smaller 4) the Poincaré map
covers the whole angular range 0 < & < 27 (cf.
Fig. 9). Even without the restriction to unimodal
maps, Le. for arbitrary choices of X, condition {236)
places restrictions on the possible invariant sets of

f

IT {see Lemma 7.2 below). (iii) At some fixed val-
ues of X if we inerease 3, we reach a value beyond
which Eq. (234) admits three (or more) solutions.
The limiting values dg are those for which the line
II = y is tangent to the graph of I1{y), i.e.

Xs = Bscos(xs+ X)
= —Hgsin{x, + X).
It follows that:
F=1+x8z1

(238)

and thus J¢ = 1Lonly if y¢=0; Eqs. (237) imply then

Y = —7/2 (mod 27). The bifurcations oceurring
when = g are — it ¥ # —7/2 — of saddle-node

type: at neighboring larger values of 4, two more
solutions appear, corresponding to a stable and an
unstable orbit of period 1 (umder the action of IT). If
Y = —x /2. the bifurcation at 3 = 1 is of the pitch-
fork type: the unique solution existing at 4 < 1 loses
its stability and a pair of stable solutions of period 1
appear at (4 > 1.

(iv) From (237) one can obtain the exact form of
the bifurcation line 4 = #¢(¥). Near 4 = 1 it has
a cusp: indeed, let in Eq. (237) ¥ = —7/2+ 7 so
that (237) implies:

tan(xs +7) = xs. (239)

For small y¢ and # this means, using (238):

s {.'T :I jas |: AT :I 1/3 g {.f’]l' :I ~ 14 I::.._I;I'T :I 2/3 |: 3-]:[])
which shows the cusp behavior. Figure 11 shows the
saddle-node bifurcation lines in a ¥ — (—/4) plane

(with an origin for ¥ defined mod(2m)).

(v) If at a fixed point yp of Ty}, dI1/dy(xr) =
—1, the map II has a flip bifurcation,?! if certain

#1See [Guckenheimer & Holmes, 1983, Chapter 111, Theorem 3.5.1].
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Fig. 11.  The bifurcation lines in the 3 — (—H) plane.

transversality conditions are obeved. In this case. smallest values of 4): at such points with coordi-
these latter? are at fixed ¥ simply: X7 +2 5 0. nates (X% 3%, the four equations (237). (241) (for

\f +2/3 &£ 0. The analogon of (237) is now: the four unknowns XU, 3% y&. yY) imply:
\_f" = _."'fj.f._ G 'H': \ F + Z‘-I \5.3- = :‘Z\(‘i = ZlZ\/ l:.-' 3’[])2 =S l ':.?-J:G‘.'
_ (241) ’
Il = fdpsin(yp +X) We look for solutions with 4Y < 7, which means

; . ; iy g that < . The second of each pair of
from which one sees that Jp(2) > 1. with equality |\)"|_ |\ . . pam,
ey ' qu (237). (241) exclude in turn the possibility

. e wieh sEenrs 5t = gl .
enly £ whithienrs & o \;‘-' ‘i hnm mfh of the pairs (237), (241) one

(vi) Equation (241) allows an exact determination 'hfdllf“‘w that:
of the fip bifurcation lines. see Fig. 11. Their max-
i at the line 4 = 1 is quadratic, which may be
easily seen as follows: let ¥ = 7/24 7 so that (241)

by 91.45.190.167 on 03/21/13. For personal use only.

cot( \J, + X \_‘“ = \T- — —\2. — (‘.nf(' \IL‘, + En'j (246)

so that:
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implies:
- =3 (aod ).

tan(xr + o) = —xF (242)
~ _ k With (245) this is possible only if \$ = +7/2.
from which. for small y . o, one dedueces:; O = /2 IS = —7/2, (246) .uld (237 imply
\.“IZJ — e cgmn (= . I )
= aret Y od 27 — sl n
ke ———|—(). = (243) wetan(m/2) (mod 2 \l—lt. If x% /2, the
' solution auvptml by (237 is ¥ =7 —|—mcra111f:,’2]

(tnod 2m). The ratio p of the length of two consec-

Then (241) leads to (ef. (238)); ) o -0 s
: ntive intervals between possible values of XV is:

.
Brlo) ~ 1+ % (244) m—2 m‘(-mu(g)
- p= =~ 0.22, (247)
(vii) The flip bifurcation curves are much broader T+ ?“r‘-"r““(ﬁ)
than the saddle-node ones (see Fig. 11). We give a B
simple estimate of the ratio of their widths (1mea- (viii) At a larger value of 3. 3(X) the orbits of

sured at the points where they intersect with the  period two which appeared at the Hip bifurcation

25 s LR NG T . o
““Conditions (1) and (F2) in [Guekenheimer & Holmes, 1983],
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deseribed above mundergo another period-doubling
bifurcation. Figure 11 shows the results of a muner-
ical ealeulation of #,(X). As is well known in many
instances, one can find values #44( ), J5(X) at which
further bifurcations to periodic stable solutions of
period 4,8,... ete. oceur. For ¥ = 0, one obtains
s = 1.8271. )’]l []'l = 1.9429. \Ir[]'l = 1.9674.

(ix) For a complete description of the situation,
one needs also an argmment that, at least for val-
ues of 4 not too large, the mapping II contains no
other invariant sets apart from the fixed points (or
orbits of period 2, ete.) deseribed above. Because
the family TI{/3, ¥) does not fall entirely under the
classes of one-dimensional mappings described in
[Collet & Eckmann, 1983] and [Guckenheimer &
Holmes, 1983], we give a statement which guar-
antees the (expected) absence of supplementary
invariant sets for small enough

Lemma 7.2. Let 42, (X)) be the second positive root
(i.e. different from =X of the equation:

L5 By =0) = Jeos(F 4 L) = =X (248)

if X< 0 and the posttive oot of (248) if ¥ > 0
(—m < X < @), Let Bog(X) be the ,wm_u.'rf positive

Y :

root (i.e. different from =+ X) of:

H{-"f. 3 Y = —:'f:]l = ."f('llh'{—:'f + S}
=-—7—-X (249)

if ¥ < 0 and the first positive root of

H{-"f. 3 Y = —:'f:]l = ."f('llh'{—:'f + S}

|

!
©
o
=

if ¥ > 0. Let:

B.(X) = minfr, B2, (X). Boy( )] (251)

Then. for 0 < )
T1{ 3, X)) consist of at most three fived points and two
orbits of period two.

The proof of this statement is relegated to
Appendix F. because it is not very short; it uses the
property of I to have a negative Schwarz deriva-
tive (236) and owes a lot to the presentation in
Ch. IIT of [Collet & Eckmann. 1983]. The con-
ditions (248) (250} describe superstable orbits of
period two (i.e. orbits which pass through thn Iax-
imnm 4 or the mininmun —# of TI{ 4, ;). If e.g.
¥ < 0. the maximmum and minimumn of H oceur at
Y = =X, X = —7 — X in turn, H{xay) = 3.

4 < B3.(Y) the mvariant sets of

I{x,,) = =/ Eq. (248) states that the iteration of
Y, nder IT should repeat itself after two steps. For
the root 4, = =X of {248) the fixed point of II lies

on the maximum of I1{y) (and on the minimum for
.")}]“r =74+ ¥in I:Q-lﬂzl

This closes the qualitative diseussion of the
mapping 11,

8. The Bifurcations of Periodic
Solutions at Large I'("! 0)

8.1. T he bifurcations of IT in the
' A plane

Instead of the parameters I', A, we can use 4z, 7),
Y(z) of Eqgs. (229), (233). If we believe that
the map (232) reproduces the main features of
the Poincaré map P, then the tips of the bifurca-
tion curves lie — alternately saddle-nodes and odd-
periodic — simply periodic (flip) along the line
4 = 1. Above certain critical values of 4 we
denote them by 3 there appear bifurcations to
orbits with higher period. Assuming = is so small
that Roz(c), M(s) may be replaced with their lim-
iting values at = = 0 (from Eqs. (167) and (222)
My = 0.6814), we obtain for the asymptotic form
of the bifurcation lines of (232):

. 1 1
ATy = o —InT — T InlnT
1 3 ‘InlnT
-+ 0
n . *-’VI'::'RL._.r"i:”:]'(-"::' * ( InT’ )
(252)

with Ry (0} of Lemma 6.1 and Cy of Eq. (216).
Figure 12 gives an idea of the appearance of the lines
G=0¢maA/Inl versus InT" plot., with 7 = 0.8, 1
(solid) and 2 and of the asviuptotic approximation
(dotted) of (252). The bifureation structure of T1,
Eq. (232} is periodic in X, i.e. the bifurcation pat-
tern repeats itself along lines of fixed v (Eq. (21))
in intervals A" obeving:

YT +AT kI + AT — X0, kInT) = 27,

P 1ot Y
(253)

The dominant term in X, Eq. (233) is A#, Eq. (231),
which is pre npnrrh mal to 1/ ie to IV/3 (c f.
Eq. (7). If 1//Z is much larger than 41/ the
magnitude of rhn second term o (7/2,2) in (233)

the pattern repeats itself in equal intervals of T'1/?
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independently of k. The period is:

o 1

i Bl
v / |sint]!/?
J—m 2

Sinee the maxima of the saddle-node and fip bifur-
cation lines occur at ¥ = —x /2. 71/2 (mod 27). they
are asvmiptotically equidistant in I'V3 as shown

AlTHHN = dt = 2.804.

P
[
(e}
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In(Gamma)

The lines 3 = 0.8, 1 (solid) and 2 and the approximation (252) to 4 =1 (dots).

in Eq. (6). At smaller values of 5 (or smaller val-
nes of =) periodicity in T''? is still the dominant
featire but the shape of the bifureation lines is
distorted. Fieure 13 shows the appearance of the
lines ¥(z.4) = const in a A/InT versus TV plot
(the horizontal line is 3(c.4) = 1). We now show
that near 7 = 1 the bifurcation structure of P
must reproduce that of 1 if T' is sufficiently large
(e sufficiently small).

0047 |

|
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_ 0034 ||
= |
E |
E |
o |
Q |
E |
2 pozd | |
@ II
= e

\
0.01 \\
\\_
\-\-\"'\-\.._ =
0000 1002 1004 1006 1008 1010
Gamma®(1/3)
Mg, 13, The lines ¥ = const alter inclusion of the other terms in (233).
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8.2. Inferences from Il to P

The mapping P. Eq. (228} is equivalent to P and
may be written in components (Py. P, ):

A= Ry g(e) + G =5 9)
= Pa(A.x. 2. 7) {255a)
A
X = ple, L;‘u -~ cos(x + SN2 7))
AT H (A x
=P, (A.x. .7 (255D)

E'rfl £.) =

S'r__ Y .‘.l + ‘I’f_{_"‘l. g, )
(I)Jfl_frijfl -;. Y :I.JII

where & and H are differentiable funetions of A
and y. bounded and with bounded derivatives (up
to the third order) with respect to A, y as & — 0
(uniformly with respect to k. as long as k > 5o > 0.
The difference @ (Ry ;) — $p(A) in (255¢) is pro-
portional to A% — R2 . and thus, using (255a). to
T Tt is convenient Iu uuud i (255a). (255b) the
qn(mrm T altiplving the funetions G and H as
an inde pmd(‘nr parameter ¢ which may be set equal
to zero (and obtain thus the mapping I1. Eq. (232)
or to =7 (to obtain P). With the assumptions con-
cerning the fumetions G and H in (255a). (255b) the
approach of ‘P to Il as ¢ — 0 is uniform with respect
to y. .7 € [U.jﬁ] b [”. ;\1_-1';] X [f_ -'.'f_,_]. where Ay,
is an upper bound on A, as derived in See. 4.1 and
do < 1.8y = 1 surround 4 = 1. As a consequence.,
we shall show generally that the properties of the
circle map IT are carried over into those of the com-
plete mapping P for g sufficiently small. at fixed =
we may replace then the phrase with
the one “as ¢ — 07 using the approximate periodic-
ity in X of ‘P, Eq. (255b). Indeed. if some property
holds “for g < ¢o". it will be true for all = < q(J,"' ver)
In the process of letting ¢ — 0 and choosing a cor-
respondingly small = we assume first 3 = const.
With this. it is easv to show:

“as g — 07

Lemma 8.1. [f v\ 1s a fived point of 11, Eq. (252).
with dl/dx(xo) # 1, then, for sufficiently small
P also has a fived point (Ao, o) so that:

R .

Ag— Ry

[l T=4<8!
(256)

| |\|1— \U| —(()|l

The argmment essentially the same as for the
implicit fimetion theorem — uses the periodicity of

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061
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I with respect to ¥ and the fact that P, tends
to 11 as = — First. for anv y the equation
Pr(A.x.q) = A has a solution A = A{yx.q) con-
tained i ( Ry ¢(e)—glM. By ¢(2)+gM) where M is
an upper bound for |G(A. x)| of (255a). Indeed, the
funetion Pa(A. v) — A is monotonical with respect
to A for small ¢ and assumes opposite signs at the
ends of the interval. The function Ay, q) is differ-
entiable and

APy
d A\ Ay . )
st —7:( (f ‘|_ Ir'_?-!'.?‘l
“r\ Up,\_l .),1, L2
aA

Let now § > 0 be such that: |dII/dx(xo) — 1| > &
and x—, x+ so that xp € (x—. X+),

|H( AT \+._-_| =4 {258)

and

!
E( x) = 1| > 4. {259
dy '

X € (X—:X+)-

Using in P, (A. \- ¢) the fhimetion A{y.q) of (257).

we evaluate (cf. (255¢)):

[P, Alx)) — H{x)|

A
3 — 1| cos( L}
P (1) e+ 9)

+ )|

+ |.")'{'ll.~.'|: X+ .i:. — Hcos(y

+0(q). {260
Both differences appearing on the right-hand side
of (260) mav be made as small as one wishes by
allowing ¢ to be sufficiently small. In particular.
the left-hand side may become less than 4/2 with a
choice of ¢ valid uniformly with respect to s, pro-
vided x > kg > 0 and with respect to x € [0,27].
Indeed., one estimates (cf. Eq. (255¢)):

‘I’fl'”'.kl—q’flf?; (=)
; . v} 1
< const X (A2 — RZ ) —
COls ”""”R;_ ,I.VI - l 273
I 24 ].Il (—_
_ 4 s
=) o7 |- {261)
hf]

We conclude from (2568) and (260) that the function
PuAX). v q)— X changes sign between y_ and y ..
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i, .c!'fr-_,"}{.?.- 280

It is also monotonical there, if ¢ is small enongh.

Indeed. the difference
dP, dIl
dx y
dA| | P ; A + A)) ”:’Jr
= | — L-\]_1 ( g |
.rf\ A ﬁ; #(€) Ha ! dA
A ;
+ /4 |-111|\—I—Zu’kuu—ﬁlllu\—k_n{.-\ 1
P;‘. :
-+ ()Ilr fj:l |"(_)[)2 |
mav be rendered as small as one wishes, upon

using (257). (261). in particular smaller than |1 —
dll/dx(x]|. ef. (259). Thus for g small enough.
|dP, /dx — 1| # 0. It follows that, as announced,
P, (A, x)—x vanishes just once between x_ and y .
This proves Lemma 8.1

Assuine now Iy ) has several fixed points with
v; with dIT/dx(x;) # 1. Choosing for every y, cor-
responding intervals {(x—. x4+ ) as in (258), we may
AssuIe nsing the nniformity of the approach
of P.,' to 11 that (:25(_.} is valid at all p(nilll'h' of
[0,27] which lie outside the union of these inter-
vals. We call this vnion f5. Then. by letting ¢ be
small enough. we may ensure that:

[Py (A x) — x| > [T(x) — x| — [Py{A.x) —II(x)|

> E (A.\) € [“. ;\M] x Cl;.
(263)
Further,
[PA(/ :
- (204}
vels. Ae(Rpp—qgll jrl'.g“_l.-- + gM)

as follows from the definition of M. Burt in each eom-
ponent of the remaining domain ( Ry s —gM. Ry, s+
gM ) % I5. according to the argument of Lemma 8.1
above, the equality:

PalA:x) — A
holds at only one point (A, y ). which is the “evolu-
tion” with o of the fixed point of the cirele map 1L
We conelude thus:

Lemma 8.2, For sufficiently small, the
points of the complete mapping P are in
one correspondence with the fived poinis \, of the

Po(Ax) —x|=0

fired

ane-to-

2 The = lependence of the
Ky 173

factors H; i

Moin (230) is very mild and may be overlooked for all purposes:
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cirele map 11, provided the latter are such that
|dIL/dx(x;) — 1| = 6. for some 6 > 0.
Since only continmity arguments are involved, the

same result is true for iterates of anv order p of P,
when compared to the iterates 17 of the cirele map.
Also. if TI{ v) has an attracting /repelling fixed point
with an elgenvalue of the linear part sufficiently
far from wnity. the eigenvalue of the linearization
of P around the corresponding fixed point is also
smaller [larger than unity. It is easv to ascertain the
stability of eigenvalues of IT equal to unity (saddle-
node bifurcations) in the transition to the complete
mapping P. if one allows for a hwther degree of
freedom: we take it to be the variable 3 of (229).2°
When varving /4. we assume the quantity ¥ is held
fixed. This is only approximately the same as hold-
ing = fixed: the departare is larger at smaller damp-
ing (see Fig. 13). One can state:

Lemma B.3. Let 2r — 46 > |[Z+w/2| > & } 0

and Xo. fo so that TI(x) = GI°(x) (cf. Bq. (292).
U'f \) = cos(x + X)) obeys:

o e .

BoIl”(x0) = x0. | ”r.- (xo)= L. (265)

Then, for q small enough. the set of equations
Pa(A, x,
Py (A.x.B.9) = x.

3,.q) = A,
det [l —DP| =0

(266)
has a a‘,ff."a‘qa‘w t-;nf'h‘ff(u; (A(q). v(q). Blq)y which tends
fo IIRI s \U I

3) as g — 0.

The areument is almost the same as in Lemma 8.1,
In view of the continuity of P, and its derivatives
as g — 01t is true that: for anv ¢ > 0 we can find
gp so that at fxed

[Pa(As x4

Y. for 0 < q < qp
5.4 — RF.._."'|

(267)

+ Py (A, x. 8, q) — BIT(

P AP APy 268)
< | L0

I\ N op | = ‘-

and
ap, oI° 9P, a2 11°
— 3 2] =+ —J— | < ¢
ay ay ay? ah?

[ 269 |

I is essentinlly
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for 0 < A< Ayr. 4 < 3 < 4 and all y. Farther,
the condition on X in the statement of the lemma
ensures that yq stays away from 0, i.e. TI{x) > d > 0
in a domain (y . v ) x (-, J4) containing (yo. 3).
for some d > 0. If ¢ < d/2, it follows from (267)
that |Pay.5.q] > d/2 > 0 on the same interval in
v and 4. Asin Lemma 8.1, the first equation {266
determines for small ¢ and all y € [0.27] a unique
solution A(x. 7. q), with dA/Oy. ON/dE3 of O(q) and
|A(x. 3.q) — Rp ;| = O(g). With the notation (sim-
ilar to 11V in (265). of. Eq. (255b))

Po= f'P(\J +gH(A, x.3.2)

(270)
the second equation (266) is:

— (A, 8.¢).v.3.2)
X gH{A(, 3 g).x ) o (71

Px: A(x: B3 9): 4. B)

In (271}.'!—"3 depends on 7 also throngh the variable
Y (cf. Eqs. (261) and (255b)): from (261) it fol-
lows that 9%/93 is O(A — Ry ;). i.e. O(q). Since
Pyl > d/2 > 0 and 8 > A_. it follows that
the partial derivative of the left-hand side of (271)
with respect to J is 1 — O{q) so that (271} deter-
mines a funetion #8(x.q) for x— < x < x4. with
ddfan = O(1). The third equation (266) may be
written after rearrangements:

oPy  (OPy Py  OP) 9P,
dx ady  OA JdN Dy
dH Py aH adPy s
= § =g g o e (272)
dy dA AN Ay

where we use 4 = 4 \.q). Since the derivatives of
Poin (272) are O(q). the latter may be rewritten as:

apY
3| —=4+0(g)| = 14+ O(q).

(273)

From (271) and (273) we deduce:
et p ]
f_)P\
ax

\ — Py —O(g) = 0. (274)
Now, at ¢ = 0 Eq. (274) has the solution y = xq.
This solution is a simple zero of the combination
VO /oy — TV because its derivative yo?I1° /a2
is nonvanishing at yg. This is a consequence of
ST % = —T1° and of the condition on X. There-
fore. this combination is monotonical on an interval

{(x—.x+) around yp. possibly included in the for-
mer. and acquires at the ends absolute valnes larger
than some d > 0. possibly smaller than the former.
Choosing again ¢ < d/2 we can find g so that, for
q < qy (1) the right-hand side of (274) has opposite
signs at y—. v+ and (i) its derivative has a con-
stant sign on (\ —. \+ ) (as a econsequence of the sec-
ond equation in (269)). Thus there exists only one
solution y(¢) for every g sufficiently small and it
approaches \ o as ¢ — 0. This leads then to solutions
An(g)). Bx(g)) with the properties announeed in
Lemma 8.3 and ends the argmment.

Sinee now 4 changes with ¢, one may won-
der about the values of the forcing I' (or 2) above
(below) which we may set 2”7 = ¢ (and thus replace
“small enough ¢" with “small enough ). Accord-
ing to Lemma 8.3, for g < ¢o, (g} is contained in
an interval [, #4]. For such values of 4. the solu-
tions #(c. 3) of the equation 57 /Y3 = 3 are at
fixed = contained in an interval [k_(2), k4 ()] which
shrinks (logarithmieally) to 1/(87) as = — 0. It is
thus contained in an interval [k, 517] of r-values.
It is enough to choose the upper limit of = so that
eFM™ — do:

The variant sets of P in the neighborhood
of (Alq).\(q). Blq)) may be described completely
using the central manifold theorem. in the man-
ner presented in [Guckenheimer & Holmes, 1983]
and [Marsden & MeCracken, 1976]. Following the
instructions of these references, we may state?:

Lemma 8.4. Let ¥ be such that: 27 — 0 = | +
7/2| > 6 > 0. For q small enough. there exists a
neighborhood U < Voof (Alg), x(q). 3(q)).

U

A —Ag)

< A} x {Ix —x(a)| < B},
Vo H)J - I,-)’,:;jjl < (}

with A, B. C independent of ¢ such that: of 5 <

A(q). 8 V. U contains no invariant sets of P of
4> 8(q) the invariant set consists of two points: if
3= 3(q). the only tnvariant set in U is (A q). vig)).
To see this. we introduce new coordinates
S§1=A—-Mq), &2=x-—x(q);
£3=0— 8(q)

centered at Zg = (Ag), x(g), B(g)). The map-
ping P mav be loeally approximated by a Tavlor

T L . e . o+ v a .
= The exercise on p. 25 of [Marsden & MeCracken, 1976] is almost the same as this lenmma.
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CXPAansion:
Ppit = E a8+ E a,;68 +
=1 >j=1
‘ L v 0= . U.-_,_:rlfl .
Py:& =& \.'.:-[J."I"I’]fll‘l‘ l—l— &
— a

Z 'I’-;w'-q; e

>j=1

(276G)
even of O(¢?) (cf.
1:(1 f??—lzlj‘; where the dependence of 3 is concealed
in X, (cf. also (255¢)). a,; are all of O(q). but nonva-
mnhum {cf. Eq. (224a)). P\’ (Zo) &~ T1(xp) # 0. the
coefficient of &5 18 1 —{g) and b, ; are nonvanishing.
as a consequence of the condition on ¥, and of O(1).
For small ¢ the coefficient (oo is approximately
P’ /ox? # 0. Let then &,.€, be new coordinates
linearly related to €. £ so that the linear part in
£1.65 of (276) becomes di:ig;nlml The first eigen-
value is O{q): it is relevane that &) = O(1)¢+0(q)&2
so that the orders of magnitude i the transformed
SVSCen:

where aj.as are O(g). ag

3
. L L7 Foad R T
Pl : 'EJ = ('1&1] + ”.’".E:.'{ + E ”r.__ﬂ“‘;.r‘g._r

izj=1

Py :E;:,*E!:P\_\._.ul—l—()lq (277)
+ E hu‘*f"w
.r_’l_r—]
are preserved. In (277) we have set £, = &, We
enlarge P by adding to (277):
- Ll
P3:1&3=¢&5. (278)

The quantity af is O(q). by ~ bgz and b} ; arve O(1).
It is possible l'.n find an approximation to the cen-
tral manifold of the enlarged P (Eqs. (277). (278))
(the mvariant manifold tangent to the subspace of
eigenvalue unity) around Zg in the form (see [Guek-
enheimer & Holmes, 1983, p. 136])

A
&= h,f tg &{,
el n2 : )
= ((&y) +<'134£_>E..
-+ '-'I'ﬁ{‘lz—k I,'_’QTE]'ZI

The coefficients «a;; are obtained by equating the
coefficients of like powers of ¢1,, £ in the condition:
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Py (€ €h), €5, £5)

Pz r S ST IS S St
= h(Pa(hr(€3.€3).62. £3),£3).

It turns out that a;; are all of O(q). as they are pro-
1.)1;1‘[’{1;11;!1 to coefficients :11')}_')1"&1‘{11@; in 'Pl- A{-t-t‘;l‘(_“llg
to the center manifold theorem (see [Marsden &
MeCracken, 1976. p. 19]) all points in a (sufficiently
stall) neighborhood I7 < V' oof 24 approach nnder
iterations of P the center manifold. which is itself
imvariant. Thus the onlv pessible invariant sets of
P are to be found by restricting the action of P
to it. Substituting then Eq. (279) into the second
equation (277) we obtain a description of the bifur-
cations at Zp:

(2‘\' )

Pa(€5,€5) 1 &5 = €3(cos(x(q) + X) + O(q))
—|—~,,)' l—f—h).._,{l—f—hn't )2
+ O(q) x h.o, (281a)
Pa(€5) : €5 = &5, (281h)

For ¢ small enough. Eq. (281a) deseribes a saddle-
node bifurcation: for ;‘f. > 0, the equation &, =
Pa(gh. %), with Py restric rwl to the quadratic part
has no solutions for small &; it hzh one double zero
for £ = 0 and two solutions for ¢4 < 0. Tlms saddle-
node bifiircations of the crele map are transferred
indeed to the complete mapping P at least for small
(. 1.e. for small =.

We show that the same is true for flip bifur-
cations. In strict analogv to Lemma 8.3 it is true
that:

Lemma 8.5. Let 2r — 6 > |X — d >0 and

0. %0 obeying (ef. Lenima 8.3):
f)]._.[[)

o

T/2| >

/

Bollo(x0) = x0. o (282)

'\l" — _J.

Then. for q small enough. the set of equations:
PalA, x, qg) =A.

(283
Py(A x.q) =x. det|I+DP|=0

fias a unique solution (Alq). x(q). #(q)) which tends

fo (R foxo. o) as g — 0.

The aremment is the same as in Lennna 8.3 with
obvious changes of sien in (273) and (274). The
same transformations of variables as in Lemma 8.4
bring P locally in the form (277) with a minus sign
in front of &, in the linear part of P,. We inquire
next whether the flip bifurcations survive the tran-
sition from one to two dimensions (from IT to P):
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Lemma 8.6. Let ¥ obey: 2m — 8 > | — 71/2| >
>0, For g small enough. there m‘:«f& a neighbor-

hood U < 'V of (Ag). x(q). 'fl"q‘l ). U 1 \l q |

< (b= x(a)| < B, V : {13 — 8(a)] -
with A. B, C ;-f.-wh-‘pv-r:.fh--f..f u_,r‘ q and such fha:.f. u'_f
3 < 8(q). 8 € V. U contains just one invariant set
of P oP. which is also an invariant set of P of

e fired

3> 3{g) the invariant set of P consists of on
point and one stable orbit of period two.

One mav doubt a priori that this is the case. since
pitchfork bifureations (as present in the mapping
IToIT) are not stable nunder perturbations in general.
Nevertheless, the special features appearing from
the restriction to mappings of the form P o P allow
a proof of the persistence of flip hifurcations when
one moves from IT to P,

Expanding P around the point ( Alg). x{q).3(q))
of Lemmma 8.5 the mapping P o P may be written
with the notations of (275)

D ) .
P& = aréy+ amf) +ap & + axnts

+ @136163 + @238283 + @3y + -

P35 &= Eo4 01167 4+ b1o81€2 + 1361 s

) A
+'I’?{H-.’H-. +'I"{ ‘_}+ ;.322&2

where a;, a;; ave of O(g) or less. ay > 0. ajy = 0. b,
are of O(1). boy = 0. bog # 0 (as g — 0 it approaches
—PI/ 30y = 1/13y) and terms of O(£7) must be
taken into account (to deseribe the pitchfork); the
cocticient dsys == 0 and has a nonzero limit as
¢ — (. as a consequence of the conditions on X
In (284) we extended P? through the addition of
the identity concerning &3 (see [Guekenheimer &
Holmes, 1983]). Changing variables to:

— gy, =t h=¢ (285)
causes the linear term a1y to disappear in the
transformed equations. One looks for an invariant
manifold of P? tangent to the plane £, = 0 in
the form (279) above. From an equation analogonus
to (280) one determines the coefficients a,; which
turn ot to be of O{g) or smaller. Replacing £, as a
funetion of £, &, in the second equation (284) one
obtains a deseription of the invariant sets i the
approximation (279) of the center manifold of the
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extended system (284):

Boafals + Baa? + Bonts + £30(£3. £26.£2)
+O0(g)(Eh+--)=0 (286)

where Bon. Bay are corrections of O(g)
of (284) and are of O(1). Boee is a correction of
O(qg) to dyps in (284), the magnitude of the coetfi-
cienits of the other eubie terms is O( 1) it is essential
that no terms with £€2 appear. even of O(q): these
would destroy the “pitchfork™; there are terms of
O(£}) multiplied by O{g). but these are halmlma
fllr\ pr lllLf‘ on £, &3 has been dropped in (286).
view of (285). At & = 0 (286) reduces to:

to Doy, bag

Bzzzfg + ()uigjj.fé s (287)

which shows the triple zero at €2 = 0 and another
zero far away., A solution of (286) which is analvtic
i &3 may be obtained formally by writing:

) . 2 QRN
Ex=er€gFexlg+ (288)
one  obtains
There exist also two other s lhll’inlﬁ
{ ilt
2

and identifving  coefficients:
—BJ, o "'IBZ"'I 5 "‘t('
analvtic in /€3 which are the contimations in
the other zeroes of (287): letting in (286) & = »
and substituring there;

e =

. . w28
fa= iz + fax" +
one determines f1 as one solution of:

Bosfi + Boga fi = 0.

(290)

The solution f, = leads to (288). The coef
ficients Bog., Boso are corrections of Og) to the
derivatives rf)ZH;"i):“f{)\. U-{Hf-"'(f)\:{ at (yo. .')’(_1_}: these
are ~ —1/8,.1 in turn. Thus. f] ~ & f;l 2 This

shows that indeed. for &5 < 0 there exists just one
solution of (286) but there are three solutions for
&€y > 0. Le. a “pitchfork™. This ends the argument
for Lemma 8.6.

8.3. Conclusions

Inn the statements of Leninas 8.3-8.6. the values of
b3 1_\’i1'19; near the pt;=a1kr~' of the saddle-node and Hi}'}
bifurcation enrves (see Fig. 11) were exeluded. With
this exception. we can conclude this section with the
following.

Theorem 8.1. If 3 > H.(X) of Lemma 7.2. the
invariant sets of the half-period Poincaré map
P(5. 2. A.x) of Duffing’s equation consist. for suf-
ficrently large T of fired pommts and perodic points
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of period two only with the possible exception

of small neighborlioods, vanishing as T increases, of

points (3 = 1,Y = 4w /2). These invariant points
are in one-to-one correspondence with those of the
cirele map 113, x, ) of (232} and approach the lat-
ter asI' — oo (g — 0). The bifurcation lines Br(X),

Bs(X) approach those of 11 in this limat.

The restriction to the domain of large 3 is artificial:
one can extend the argument and show the stabil-
itv in the transition II = P(= P} of the period
doubling cascade and — presumably — of the lim-
iting chaotic motion. This gives a natural explana-
tion for the chaotic behavior observed a long time
ago in the damped and forced Duffing oscillators.
Theorem 8.1 also gives a complete understanding of
the regularities observed in the bifurcation pattern
of Duffing’s equation at large forcing and (moder-
ately) high damping.

9. Comments and Conclusions

It is apparent that an important ingredient in the
justification of the bifurcation structure of Eq. (1)
{or Eq. (8)) is the sudden change of “natural” refer-
ence at t = 0 in the description of the motion. This
is brought about by the discontinity occurring at
t = 0 when passing from the left-hand reference
Xty to Xg(t) (see Fig. 2. The continuation of
_-Yj.gliff} to ¢ :ﬁ::>.[.] l- nH('ﬂlzil’lll‘:’\' (see Fig. G) becanse
(intuitively) a particle moving for t < 0 at the bot-
tom of the potential well 2! /4 — rsint (cf. Eq. (8))
cannot Tollow the infinite velocity of the mininmmm
at t = 0. The particle behaves as if it had been
subjected to a “kidk”. In a series of papers by Par-
litz [1993] and Parlitz et al. [1991a, 1991b], the
authors showed that an infinite sequence of hifur-
cation curves occur in a very simple “kick and
twist model”. deseribed by the differential equations
(r=rcosa,y=rsna, d=0):

d

e
)

=1+ (291)
supplemented by a periodic “kick™. i.e. a displace-
ment of the y coordinate by an amount a at equally
spaced time intervals T\ The control parameters are
amplitude a and period T

For Duffing-type equations Eilenberger and
Schmide [1992] gave a simple and elegant argu-
ment that for a real sudden change of the forcing
at t = 0 (obtained by replacing sint on the right-
hand side of (8) by a step function) a nonlinear

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

dependence of the restoring force on the displace-
ment (1) leads naturally at sufficiently high damp-
ing to a (half-period) Poincaré map of the form (4)
or (232), i.e. to a “cirele map”. The latter deseribes
accurately the bifurcation structure of the Duffing
equation at high forcing and damping. The critique
to this argument is obviously that there is in (8)
or (9) no real discontinnous change of forcing (no
real “kick” [Eilenberger & Schmidt, 1992]) at ¢ = 0:
the change of reference is only a convenient artefact.
As is apparent from Sec. 6. see Fig. 8 or Fig. 9, the
development of the cirele map oceurs actually in
a short time interval 7 = O(1/~) near t = 0. In
the limit I' — oo this interval becomes infinitely
short compared to the whole interval [0, 7/2] (actu-
allv O(1/In(1/2)) compared to it) but is infinitely
long (O(1/(=**In1/2))) compared to the boundary

S

layer, where 7 (cf. Eq. (18}) is O(1} (this is the
somewhat enlarged transttion region of Schmidt
and Eilenberger [1998] where the inner and outer
expansions are matched, see Sec. 3).

The following is a qualitative argument for the
appearance of the eircle map as an approximation to
the half-period Poincaré map — relating t = —w/2
to t = 7/2. as it emerges from the discussion in
Secs. b and 6. The diseussion ignores the diffieulties
related to the changes of variable between 7 and
Or r of (84) and assumes they ean be performed
all the way down to t = 0. In the time Interval
[—7 /2, =707 5], s > 0 the motion around the left-
hand reference solution is essentially harmonic in
the variable #;, Eq. (84} i.e. with a period inde-
pendent of the amplitande. According to Lemma 5.2
there exists an additional phase proportional to
the square of the amplitude at { = —x/2 which
is a cause for the distortions shown in Fig. 5. To
these, we have to add the displacements appear-
g when we get into the boundary layer down to
t = 0 where the motion of solutions in the vicinity
of Xp(t) is approximately deseribed by the linear
ecquation (153). Figure b testifies however that the
distortion of the small disk at t = —7v/2inthet =0
plane is not a lmge effect, so that we make the rough
approximation that harmonic motion is dominant
and thms all nstial phases o, measured around
XNp(t)y att = —7/2 have increased at ¢+ = 0 by
the same amount a, independent of the amplitude:

H(0) = + a. {292)

At ¢ = 0 the motion consists essentially of
rotations around the right-hand reference solution
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Xpg(t). The angular velocity has an harmonie
{amplimide-independent) term in the variable 6.
Eq. (84) and (to a frst approximation) a second
term which decreases with #p like l,-f'H'}:"J and is
proportional to the square of the amplitude {of the
distance from the origin in the w. dw/df plane, see
Eeqs. (182a). (182b). This latter term is the promi-
nent effect of the nonlinearities in (1). Its effect is
limited to a time 7 < 1/7. after which the motion
is essentially harmonic. The final value ¢op of the
angle at § = 7/2 is the value of the rotation angle
aronnd Xp(f) between ¢+ = 0 and 7/2. Thns. for a
solution rotating at distance R from Xp(f) (with I

~L1/8y

measured in units of ).

BR*
sl d

A

\_.-" =3

hy = +C. (203)
The first term is common to all solutions and is the
effect of the harmonic part: 1/y/% is the order of
magnitude of ¢ = 7/2 when expressed in the vari-
able . Eq. (84). The second term is the integral
' since A ~ 7Y% a time
r = 1/~ corresponds to fp &~ 1/+Y3. The third
term is the contribution to the rotation angle of
times larger than 1/4 and is agam independent of
the chosen solution.

The continmation to ¢ > 0 of the left-hand ref-
erence solution Xy () also rotates around Xg(f) at
a distance Ry from it (ef. Fig. 6) and achieves at
t = 7/2 a total rotation (293) given by an angle
denoted by 04, . Neighboring solutions with a dis-
tance Ry + 0R to Xp(t) acquire a rotation angle:

2 )
i 2B R 60R (204)

~ 1/3 ! .

—3/4 ;
over 6,°"" up to 7 = 1/v:

We assume R is constant down to ¢t = (0. A
solution starting at + = —w/2 close enough (i.e.
O(3NEER7/2y - of, Theorem 4.1) to X ) with an

J

angle ¢y to the a-axis ends up at ¢+ = 0 in a disk of
radius r = O(e"1/8) = O(e=27<!/8) around X,
{cf. Eqs. (166a), (166b)) and in a position enclos-
ing an angle ©(0). Eq. (292) with the s-axis. Its
distance to Xp(0) is:

Ry +00R = \ffﬁ'f + 2+ 2R cos(¢ +a)

~ R 4 reosit; +a)

(D07
| ;._}-._} )

=“Inner variables X, 7 may be defined through » = ey =

which gives an estimate of 3. Substituting in {294)
one obtains the cirele map. which gives the angle
pat t =m/2 in terms of ¢y at t = —w/2:
const x 277

/3

!

cos{dy +a). (296)
This mapping is equivalent to the form (4) or (232)
(cf, Sec. 7.1). The entire paper is actually devoted
to the justification of this qualitative picture in a
correct manner.

The role of the nonlinearities mav be appreci-
ated if one compares Eq. (8) with a (possible) linear
version of it:

¥+ 2ud 4+ x = (sin i (297)

which has. for all ji a unique periodic solu-
tion, One can perform the same analysis with
inner and outer expansions as for (8).2 The dif-
ference u(t) = #(t) — xp(f) to a corresponding ref-
erence solution ap (1) obeys the equation of a linear
damped harmonic oscillator; the latter transforms
a small disk w2 + @2/c < 2 at t = —7/2 into a
disk of radins smaller by a factor =7 at § = 7/2
(around a corresponding reference wp(t)). almost
without change of shape (to first order in p/\/z).
The difference in rotation angles for different ampli-
tudes. as expressed by (294) in the nonlinear case.
I8 2610,

The anthor believes it is a special virtue of the
averaging method of Bogolyubov and Mitropolski
[1961] that it allows a systematic and easily inter-
pretable treatment of the nonharmonie behavior
in the small |t| domain (the “transition region” of
[Schmidt & Eilenberger, 1998]). In fact, use of this
method makes up the main difference between the
treatment of my earlier internal report [Stefanescu.
1990] and of the present work to that of the papers
of Eilenberger and Schmide [1992], Schmidt and
Eilenberger [1998]. The analysis of these authors is
based on the adiabatie theorem of elassical mechan-
ics [Arnold. 1978: Landau & Lifshitz. 1960). applied
to the motion deseribed by Eq. (9) around the ref-
erence (“creeping” ) solutions Xy (t\/5). Xp(t /). %
It is not so easy to extend the adiabatic approx-
imation to the region of small |f| in such a man-
ner that it matches the boundary laver deseription
of the motion. given to zeroth order hy Eq. (64a).
.

T.

20 /v i 3 ik i = ¥ & =
Ihe latter are introdnced in a manner similar to this paper and to the work of Byatt-Smith [1087].
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This is done by a method of time-dependent canon-
ical transtormations. specially devised for this pur-
pose and presented in Appendix B of [Schmide &
Eilenberger. 1998]. The procedure is claimed to be
numericallv suecesstul but it is diffienlt to identify
the various terms given by the averaging method of
Sees. 5.1 and 6.

Both the work of Eilenberger and Schmide
[1992. 1998] and the present one (with its earlier
version) rely on a Taylor expansion to first (or sec-
ond order) of the Poinearé map around the contin-
nation of the left-hand reference solution to ¢ > 0.
This statement may not be obviously valid for the
work of Eilenberger and Schmidt because of the
different fornmlation of the Poincaré map. but a
moment's consideration shows that it is implied in
Eqs. (122), (123) of [Eilenberger & Schmidt, 1992]
and in Eq. (24) of [Schmidt & Eilenberger, 1998].
The reason why a Tavlor expansion is expected to
be sufficient is that the magnitude of the small disk

of radius e"™/23/16 jg further reduced by a factor™

#7/2 at t = 0. so that one is interested in a “really”
small neighborhood of the eontimmation of X (f)
att > 0.

For given A and T in the large A — I' region
considered here (or = and g in the corresponding
domain) one determines mumerically the coefficients
of this expansion (as in [Schmidt & Eilenberger.
1995]} or integrates the variational f\qlli'll’il)ll around
Xpit)y from £ =0 tof =7/2, as analvzed (in prin-
ciplej in this work (and in the earlier report): the
advantage of the latter method is that the averae-
ing transformations allow several statements about
the solutions (see See, 6.2), especially about their
behavior as ¢ — (. Really “universal” numerical
constants appear only in this limit (c¢f. Eqs. (212),
(213)). Thev are determined by the boundarv laver
equations in the limit v — 0, This paper devotes
mieh attention to the justification of these limits
(see Lemma 6.4). the reason being that not all of
them erist: see Eqs. (222), (223). It is in fact the
equilibrivun between this divergenee and the 1mag-
nitude of the small disk at { = 0 (see Fig. 5) which
is responsible for the onset of bifureations as the
damping decreases at fixed T Unfortunatelyv. a sim-
ilar discussion appears to be absent in the work of
Eilenberger and Schmidr.

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

It is remarkable that the cirele map which
comes from the first order Taylor expansion — turns
ont. aceording to the mnnerical evidence of Schnidr
and Eilenberger [1998]. to have a large domain of
validity at least qualitatively i the I' = A
plane, not limited to values of the damping increas-
me logarithmically with the foreing (as assumed
this paper). It is an open question to what extent
(down to which value of the damping A) the very
rich bifurcation structure of the circle map is indeed
transferred to the highly complex bifurcation dia-
gram of the Duffing equation in the I' — A plane.
The arenments of Sec. 8.1 only show that the trans-
fer of the npper part of the bifurcation curves does
oceur asymptotically in T
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Appendices
A. Bound on the Increase of E( )
in the Interval ("3P;"9)

drop the index B on Op.
iz, HM?_ variables _f}_'ff' the
val (—m/2.0) do not occur at all The change of

In this Appendir we

g because the inter-
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variables W = wk(#) transforms Eq. (95) into:

AW 2 dkdW
di? k2 df do

J'
+ W1+ G(a) —|—H-—|—%:'i (A.1)

'\\'}.1(‘1'1‘

ok L d%k .
rlf Y=l _— (A.2)
G(e) =a() +; (IH) g

This funetion decreases like 1/82 for large 6. inde-
pendently of the choice of p. Eq. (93) in Sec. 4.2.
The energy associated to (A.1):

1 /dW\2 W2
éﬁ:y]:;( ) +— l—I—Cﬂ ;|:|

od#
w3 W .
R SPa— { _:\__:_"1‘|
3 T 12 ) "
evolves In time according to;

£ W2dG 3 (dW)\?
{—.=_—{——— i (:\..—l',l
o 2 do 468\ db '

where we have used the approximation k(#) =
/2 (Y2 for small ¢. The 1"111‘1'}.,'\' t 1= bounded

because. using W? < ()c (cf. Eq. (98)). Eq. (A4)
leads to the inequality:
dln & ddd
:.?H < CONSE W | _—'L-__;,u

which means € < const€(fp).* This is still a very
weak bound for w(#): it simply implies that |w(#)] <
const/k(6) i.e. using (105)

o 3/8
< consty/ & uf) (H
(4]

: H a8
< consty/E(Hy) (H_) . (ALG)

()

We consider now in more detail the negative
“damping” n‘rm in (Ad): by comparing with the
motion Wy (#) in the time independent potential:

N w2 w3 Wt

! (H):?—I—T—I—ﬁ (;\_.T_'.u
we shall show that, in fact. the energy £ decreases to
zero like eonst /67, for some s > 0. Let T(E) be the

3lee Fip. (1050 in this section we drop the index K.
BTE) = 0as& — 0.

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

period of the motion with energy £ in the potential
ViU, Eq. (A7) and let Ty = sup (&) over all
£ > 0.32 Farther let T be a time interval obeyving
T = T for some integer ¢ > 1. The following is
nsefnl:

Statement A.1. There erists a constant kp, 0 <
bp < 1 so that the inequality:

AW\ o
( d_ﬁ) - c‘ | :‘LB J

i fulfilled by the motion W (0) with energy € in the
fized potential V(W) Eq. (A.7) during a time kpT.
mdependently of the energy of the motion.

Indeed, we evaluate first the fraction &(&) of
a period of the motion with energy £ during
which (A.8) is obeved. Let first & > 1:

/€
) I(H)
B} n 2l (A.9)

vl —

O

i
|

[
LC )

with

W (4, E) dV
fuf)E/ VE-V(W)

Vi—.f&) \/
l /vui +.A) IF”
EL/A Jul{—A) 'l A%y? A o'
V' T2 T3 12
where W{—/+.&) are the two real roots of the equa-
1

tion V(W) = fE€ u(—/4.)\) are the roots of the
corresponding equation after changing variables to
W zmuéf'-’"". f=1/2.1and A = 1/&Y. The func-
tion A{E(A)) is a continuons. strictly positive fune-
tion of A on the cosed interval [U. l] and achieves
there its smallest value which is diferent from zero
{and less than 1). The reasoning mayv be repeated
for £ < 1, with the change of variables W = u&!/2,
Let the mmimum of }’._‘_{é",u over the whole range
£ > 0 be denoted by k,,. The f-time interval T
contains » > g complete periods of the motion with
energy £, so that the time interval in which (A.R)
is obeved is at least vk, T/(r + 1). Then, choosing:

Statement A1 is verified.
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Now, consider the two equations (A1) and:

EWr LW Lt AL 10
- » L= I Ir; 4
i T Wt Wit — =1 (A.10)

and motions W(#). obeying (A.1), and W,(#). obey-
ing (A.10). such that they have the same initial
conditions at some “initial” #-time €, > o I we
subtraect {A.10) from (A.1). use the notations:

dawy, dw

p=W,—-W, o= B dn

(A1)
n=|p| +|o|.
and integrate the first order differential equations

equivalent to (A1) and (A.10) from #, to #, we
obtain the inequality™?3:

<1 -}
< / 10l + / W+ Weldd
Jo Jo;

-

e
! / W2+ WW, + Wb
of 1

¢ 3
¥ / =
J 10

Because the energy £ of the “true” motion W {#)
is bounded, all terms containing W, W, explicitly
are bounded by constants. so that we ean repre-

sent (A12) by

) .0
< A / .PJTHrH -+ Jl_f—] / (El —+ (1|'H'|) ol
J A ’

)
M / ndé + M, H(0)
o

L

dW
b

i)
(;9_'_/ (WG(0)|de.  (A12)
1

(A.13 )

with M. My suitable constants and H{#) monoton-
ically inereasing and positive, H{#,) = 0. For §, <
H< 0, +T. H(#) <const x T/8;. Gronwall s inequal-
ity [Bellman, 1953, p. 35; Coddington & Levinson.,
1955, p. 37] implies then, for 8, < 6 < 6, + T

ne) < MyH(#) exp(MT) < conste- A.14)

i

where the constant is independent of #,. We esti-
mate now the energy loss AE of the “true” mwmotion

HH” = at ;.

B ; i AN T
[t is al our disposal to increase E(0;). il necessary.

W(#) ina “f-time” T

AT 3w y?
- _/,_-,i 10 ( A6 ) d

-G T 3 d”-{_ 2 1
2 — {
Jo 40\ do
N 4+T 3 (7dWN\2  fdW,\2
Jo T\ a0 ( b
f
3 o JAEE 3
> (o '|—t-.‘|rf')‘ ViEzife) o"'f (H ‘|;r3#j
/,?;T,_;H’ (6,) —Cy l/ﬂi ”‘f’-lH
3 T2 ~
b F——— & — Co—/E. A.15)
);‘!T-ll"ﬂ,—l-]m‘.l thf:\ (A.15)

I the first step we used Statement A1 and inequal-
ities like (98) to bound |[dW/dg|. |dW;/df| from
above. Equation (A.14) was used in the second step.
The total change of energy £(68, + T) — £(H,) is
obtained by adding the increase due to the first term
in {A.2). This latter is bounded by C,T x £(6,)/65.
One verifies that, if ¢, is sufficiently large. the
total change of energy is negative. We may even
require that it be larger i absolute value than
(3/ 1k ET/0;. for a mamber 0 < ky < kp. This gives
a lower bound B on the energies for which this may
oceur (6, /(8; + T_,'I ~ 1)

— 4T 1 :
S TR 2 2 _ (A 16
VE > /(B) = 30, ; 0] (A.16)
T

This bound depends on 4, and decreases like 1/6.
We may assume that the maximal enerey £, at 4,

is such that (A.16) is satisfied and that even, say.*}:

Em(8;) > 2B. (A.17)

Then at §# = 0, + T the energies £ of all motions for
which (A.16) is true at @, have decreased at least to
E(L—=(3/4 0 T/8,). and so has the maximnal

) @y

1r.'lH.f .‘-|: -".'r'IH.f‘ TR
Em(0i+T) = Eml _J(l 10

This is a bound for the energies of all motions with
E(0;) < E,(0;): indeed. all those motions for which
the inequality (A.16) at 4, is not obeyed cannot
acquire by (AB) in the f-time T sufficient energy to
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oot over £,,(0, + 1. in view of the condition {A.17)
if 8, is large enough. Farther. the decrease of the
maximal energy £,,(F) in the interval (6,.6, +T) is
less than that of the bound B i the same f-interval;
at #, + T the latter is. according to (A.16)

B, + T) ~ B(6,) (%‘T)

Thus. (A7) is obeved also at 8, + T with the max-
fmal energy (A.18) and the bound B of (A.19); we
may rhvnpuauml to 8, + 2T ete. and conclude that,
after n steps. the maximal energy is bounded by

EL 0, +nT)=E,,(00, ) (l = éi)
=1

(A.19)

16, + T
(A.20)

For large n. the product in (A.20) behaves like
(nT'/6;) 1/ (0/6; )7 W concude that the
maximal energy &, decreases like (#/6,)7". with
0 < r < 1. As a consequence, the weak bound on
|w(#)] contained in the first inequality of (A.6) may
be now strenegthened to;

i 3/8—p/2
< CO1SE (—) : (A.21)
7 \ )

We return now to the energy E(#) of the original
equation (95) and to the inequality (107):

dk
db

i 9,/8—-3r/2 » H# 3/8 1
< Cconst X | — A "
A, (H A

Integration of (A.22

|.rr'|f|"{d'}

”.{7“5

1
3

(A.22)

) leads to:

. l H 3/4—3p/2
E(H:'_EHI( (“l]“‘-rXﬁ(a)
1 2
|:}'L_Q.'_~';:|
which llkl'lflt\H our assertion in FEq. (109) (with

s= 3r/ 2

B. The Inversion of the Averaging
Transformations

A simple proof is offered that the averaging trans-
formations (121a). (121b) (or (125a). (125h)) lead-
ing from (R.d) (Ry.d1) (or from the latter
to (Haz.o2)) arve invertible, if the quantity h(87).

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

Eqs. (91), (117} 15 small enongh. This is achieved
either for small enough = or large enongh |ér]- In
Sec. 6 the quantity k(@) is replaced in the aver-
aging transformations by b(6g). which is mono-
tonically decreasing like #.,7" and may be thus
made small for large #p. We show that the trans-
formation (121a). (121b) is one-to-one from a strip
{0 < R < M} in the (1. 0) plane to its domain of
values in (Rq. @1). for small /i (or k). Here M is the
bound on the values of R established in Sec. 4.7 (see
Corollarv 4.1).

From (121a). (121h), taking derivatives at fixed
A one verifies that, for (small) positive constants

Cij.i,J = 1,2, it is true that:
JR <
>1—=Cyhi(f) M.
T 1)
(B.1a)
R - i
—L| < Cpoh(f)M?
e
iy =
=8 ,I.P(H :I_
Bn | Rk
(B.1b)
oy : e
2~ Gk )M,
o) ’
Assume now two different points (R,.¢,). (B o)

of the (R.o) plane were mapped to the same
(Ry.01). Consider then the two functions of .0 <
g < :
.2t 1

fl'[(.w_]l =R(R,+sDcosa, o, +sDsina).

I:B?:I
{_;| (ty=o1 (R, +sDeosa, o, + sDsina)
where [ is the distanee between the two points and
tan a is the sl pe of thn line joining them. Since the
two funetions B (s 1. ©1(s) assmme the same value at
s=0 and s = 1, there exist vahies 0 < 8.8 < 1
so that their derivatives with respect to s vanish
there. Suppose a is such that. e.g. [cosa| = 1/ V2
Then, using (B.1a):

iy

(s

l’jlr ]’ 1

¢

dny

/@)

—D

SI11 6

|-\H| " COS O

>l (i —ChM —C'lghlfz).
V2 :
(B.3)

It is clear that for h small enough. the rieht-hand
side of (B.3) does not vanish. which contradiets the
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fact that f?|l,')-< ) assumies the same value at s = 0
and 1.

If [cosa| < 1/v2. we use the function ¢ (s)
of (B.2) and relation (B.1b) and reach the same
(&t rlli‘lllt-éii 1.

In ecaleulations. the inversion is achieved by
expanding R{Ry.o1). o( Ry, ¢1) in powers of I (cf.
Eqs. (123a). (123b)).

. The Solutions of the Variational
Equation and the WKDB
Approximation

The following is an adaptation to the present situ-
ation of procedures that are common in the discus-
sion of the WKB method (see, e.g. [Langer, 1949]
and any classical hook on differential equations. e.g.
[Coddington & Levinson. 1955]).

C.1. The existence of some special
solutions with WK B
asymptotics

Consider the WKDB functions (154);
pes 31/4 ws | 1 ™ =0
Vi e —— 4 0° B(r,e) Y %dr
o5 Vs (7 =y1/1 ] sin i v

The functions w..(0.7,) =

[l

for some 7, < 0.
VLS are the solutions cos(f — 6,). sin(# —6,,)
of the equation

“,PZH. i
e, B

L/2r Iy 3.4
L L1 Ilh".'_

(1l

ff 3 3
: (C.2)
b2

and® 8, = 0(r,). The same changes of dependent
and independent variable transform the variational
equation (153) into

h'fz'h’-‘ - Y - —1/d17 ~
W —l—:‘f":’l‘l_(.'!'.ry‘.'] = “ == I 'I(_;"
i)
with?36
( J_E)Z 422
G- BAI) & (C.4)

i}

o
K}

of Zin (155).

The definition of # in (C.2) dilfers fom the one of 87 in (84) by the implicit consideration of the term 4

Solutions of (C.3) which assume at 7 = —=* the

values and derivatives of w,. . are obtained using the

method of variation of paramaters as the nnique

solutions of the linear integral equation: (#(=77) ~
—48/3

—=48/3y

1
Cus

oot
Wi o= Wi s+ / G0 sin(# — 0" b, (607)dE' .
of —E 4 =3

(C:5)

I

Since G(#) ~ 1/62. the desired solution of (C.5) may
be obtained by iteration at large |f| starting from
w,. o sinee its values and derivative are bounded for
|| sufficiently large (C.5). implies that, for such 6.

""Ir'-”-‘t'_.‘-c 'rf”‘."..-;

de b

- (--‘
<

|.; W o — (C.6)

H.EZ.H‘I () |

B M

(as)

Reverting to the variable 7. to the original Vs
of (C.1) and to the songht solutions V.. (7. =)
of {153):

S wWes(6) i
VoalT(0).c) = —= 7 (C.7)
1T E(r(0),e) M

we may state that. for all |7| sufficiently large (i.e.

—ih.

even larger than ==7);

! I_-‘ I Flas)y
W Ves e )

dvys B

dVes B Al

dr dr ;

where we have used df/dr ~ 7'/3. Equation (C.8)
shows in what sense V.. J(7) asymptotically approach

Vieslimy, The solutions V. . obtained by (C.5) for

large |7| may be extended down to 7 = 0.

C.2. Thelimit"! 0

The solutions V., obtained above depend on the
chosen value of =. It is. however, plausible. as shown
in See. 5.3 (ef. Eq. (156)) that thev approach a limir
as ¢ — 0. Indeed. on an interval [z, 0] with § =
3r/8 (cf. Eq. (136)) the difference |np(7) — noor(7)|
tends to zero as = — 0. The function G, Eq. (C.4)
depends on ¢ through g (7 (ef. Eq. (155)). is
well defined for ¢ = 0 (replacing n;, bv ooz ) and

o

in the dehinition

“The function & is equal to the first two terms in (92) il one uses the approximation (155) lor Z(7.2).
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Eq. (C.5) has a formal limit for = = 0: Z. Eq. (155), on e, and if 7 is fixed. (7. ) is dif-
ferent from @({7. = = 0). We estimate the diflerence
Wesl6. UI—H,Hl‘HI ; .
AB(T. 2) between the f-values corresponding to the
L same 7 at ¢ and at £ = 0:
+ / (n |-.]_1_1|H—|'{7'!|.‘r, n'lH [}mlrﬁf
BTES AW =0(r.2) —0(1.0)
{ .9 )
The solution . (6.0} of (C.9) may be obtained hy = / (2(7',¢) —Z(7,0))dr’
iteration and is boumded for large #: we may esti- g
mate at a fired value of 0 its departure from the ()( _3/4.10/3 (€13}
solution . .(f. ) of (C.5) by Gronwall's Lemma as o L/ ) Kt

follows: we subtract (C.9) from (C.5), separate out

e T T g S L O Y
l'-h(‘ T _111[—_‘\1\ ?1]. |l B I 1 0 | ?111(1 f‘HI’lIIl ate A” sl H ) = W }.ll‘l e We 11(“ € 1186 fl [—}.ll‘ £ _\I)cnlhu s {-j:._)‘] | -.JJ. [ ]
(0.2) — b, (6.0): evaluate the integral. This difference vanishes as
BN, C N e . ; e \
_— = — 0 for < % with the choice of § in (C.12).

|Ati,.(8)| < const x / G(#.0)d# + const We can now write. using - = 0(7. <), 8 = 6(7.0)
o —X

De,5(T: €) = Wes(T,0)| < |Wes(0s, €) —tes(0s,0)|

SRl \ Sinr N i
(6.0) — G(O'.5)|db - [es(610) — sl 0)|

e . =T, +T5. (:C',l-l:‘,l
+ / 7|H |_\.‘r‘, sl IlffH‘
N 4 " - - - . "
The first term in (C.14) is the difference at fired 0
&) 3 . . :
(C.10)  and vanishes as = — 0. according to (C.12). For the
Since G < /02, the first term is bounded hy seconud term we use the estimate (C.13) of A8 and
Ly -~ \ i 3 g s - Y A
const x =23 Using (C.4) and the expansions (49). the integral equation (C.9):
(51). (cf. Eq. (74)) one verifies that:

.::{’r;J T_" {: |”‘f'_.~i|:r_H" :I - ”‘_'..'r- 1.'

ol
+ / G(0')(sin(f. — 6"
S —oc

G(H,¢) - G(8.0)| =0

[

138" =
— sin(f — 0 yip, (6 .0)dd

by 91.45.190.167 on 03/21/13. For personal use only.

so that Eq. (C.10) mav be rewritten in short:
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G
1 s AN i SR s e .
|A“ () | I‘f . / ‘2 |f_\.u‘|:f7‘f :||€;Wf + G sin(f — 8. (6, 0)dE .
. JH
el l=t
(C.11) (C.15)
where C‘Il:___,'l tends to zero when ¢ — . Gronwall's All terms in (C.15) mayv be majorized by const x
Lemma [Bellman. 1953; Coddington & Levinson. |f. — 6] so that, as announced. at any fixed 7
1955: Guekenheimer & Holmes. 1983], Ch. IV shows i [0.0]. the solutions of (C.5) approach those
that of (C.9) as = — (0.

. 7 (-y
|Aw(t)| < C(=) n}{p( / F)
s k= - % i i 5
o C.3. Thedi erence of two solutions
< Cy(¢e) (C.12) of the variational equation
where C)(z) vanishes as £ tends to zero. This  We need sometimes an {‘Hl'illmti‘ of the difference
shows that, as anmounced. if the valne of # is of two solutions Vi(7). (i = 1.2) of rlu variational

kept nmchanged. w,. (0. ) approach w,. .(f#.= = ()  equation on the \\I le interval [—=7",0], knowing
as ¢ — (0. The same is true for the derivatives  the difference of their initial values n\n,._.-'f,ju. i=1,2
dw,. . /dB(#. ). However. this does not vet imply at 7 = —=° Let w;(#) = V,EY! be then the
that this limit exists af fired 7: indeed the rela-  solutions corresponding to two equations like (C.5)

—5

tion (C.2) defining # in terms of 7 depends through containing snitable initial econditions at 7 = —=¢
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ffl—:_'_ﬁ‘l 3 =

4, throngh:

T}._‘li Be ].E\ITI‘I

which we eall a =
dw/df{ —=""° (

) are obtamed from (o,

;= 3t/ ,..f_"””.
P s" . (C.16)
06 T0/6

8, + ——e"“Pay.

B =3

Subtracting the two equations (C.5) corresponding

to ;. ¢ = 1.2 one obtains with an obvious notation:

Aw(f) = Aaw.(0) -|—$_.-'>’u'_q{.H

Gy sin(0 — 0\ A (0)de'.

I:(_‘lT:I

In a well known manner, from (C.17) and the
boundedness of « Gronwall’s Lennma [Bell-
man. 1953; Coddington & Levinson. 1955] implies
that:

= O(max(Aa. A3

|Adi(6)]. ‘Aﬂw) (C.18)

df

The estimate (C.18) holds as long as Z £ 0. in
our case down to 7 = 0. Reverting to the original
Vi(r) and noticing that for finite 7, Z(7) is finite.
together with its derivative. we conclude that the
sawte estimate (CL18) is rue also for the differences

of V.. dV;/dr. Using (C.16):

) AV i i
|AV (7)) A f— )| = O(max(Aas™"" AZMY).
D. The Limit of R ¢ (") for "1 0
We show that the values Ry, ¢(c) = R(c.t(f) = 7/2)

obtained through the solution of (176a) tend to a
limit 1) — 0. The latter is the asvmptotic
value of the solution obtained by setting formally
e = 01in {176a), (176b), i.e. with the replacements
i k(8 indieated in Lenuna 6.1

r(0) as

dRp o 7T Rpo(6)
= —— ——— 5in(2z)
a9~ 216 7(6)33
R? ()
-+ Wt sl 20 + sin 3 ’r,l
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ff{'?;ﬂn B i
g 2167(8)%/3

(14 cos2z)

f’; (&)
s '5((»-. o + cos 320
47 6‘.
1 Jrl'; UI.-Q\IQ 3 1
—_ | — 4+ 2¢0s82 —rnxl
2 0 5 it Zo + 20
(D. _H IJI
where we have used the limiting ﬂ s (see
E.{lH, |IU?| |:'1;_-1':|'| il{l"H‘l pas _-"'l”-‘ﬂ,l_er‘l & ;‘I: 1
12 and 29 = 0+ o). In (D.1a), (D.1b)
one uses 7(#) as determined from:
v T o 5
L .)\;‘.5_ 1/3. .5\;‘.) I sy
A{T) = 1 () AR (e

where the last approximation is trae for large 7. In
this domain.
/4

40\ ;
T(0) =~ (—_) . I:D;,I
V3

We perform now on Egs. (D.1a). (D.1b) the same
“averaging” transformations as in Sec, 5 and “elim-
inate” successively terms in 1/6#%% and 1/6%/1. At
this latter stage. there appear in the equation for
oo secnlar terms. which may diverge as 6 — .
It is convenient to continue this procedure and
eliminate further terms in 1/8%/% at which stage
it becomes apparent that further seeular terms for
¢ 1.0 ocenr to O(1/6%2), but no such terms oceur for
;oo A harther transformation to remove terms in
dk/df =~ 1/8M1% also leads in the equation for Ry g
to secular terms of O(kdk/df) = O(1/671). None of
these terms is divergent as # — oo, They contribute
finite quantities to the phase op . If we denote by
Bipol8). o4 0(8) the dependent variables obtained
after these four transformations. we find that these
1'-1)1‘_‘\' (\(111z'irinIJH like::

!’IR” (il —3/a ;
e g 4 b (D.da)
df L' ' D )
o ! 2
’f‘-"‘lf_\kl _ T 3v3 RL.[I'{’():'A
o 24\ 4 63/
+0(0732), (D.4h)

In writing these equations. we have used the fact
that. according to Sec. 4. R; o is bounded for all
# and that all other rerms. coming from g(¢) and

Rpo(0)3 /. sindzg e s e ; : :
1200y (Hlllff-n = ) (D.1a)  the derivatives of k(#) fall off even quicker with 6.
= Integrating (D .4a) between two values ) and #5, we
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conelude that:

[ o(t2) — Rapo(6)]

—1/2 —1/2

) g .
< const(f, T —6, 7). (D.5)

i

Since for a sequence of points 4,, — ~c the difference
between anv two terms Rypo(8,). By o(0,,) tends
to zero when n.m — oc. it follows that the sequence
Ry ol8,) approaches a limit, which we call By ,(0).
We return now step by step to the original variable
By ol0) by inverting the transformations leading to
By o0 these transformations are such that the dif-
ference between R, o and R o decreases to zero as
#) — oo so that we conelude that Ry o(#) approaches
the same limit Ry ¢(0).

Further, for a finite value of =, for which @(¢ =
7/2) = const//z. we perform the same trans-
formations to obtain equations similar to {D.4a)
and (D.4b). with the difference that on the right-
hand side, we have powers of k(#), and its product
with derivatives or with g(#):

ARy - oA o o
—p = O(k™ +q) (D.6a)
.rf:'_}lf,.:' _ ——T'R ."Fi‘ug.?--fH'.Q
”fH 2_1: L.s ll_ I LA
+O(E + ). (D.6b)

It is necessary to keep the terms with g(#) becanse
k() talls off exponentially for time scales of O(1)
and thus mav become smaller than ¢(8). which set-
tles to a value of O(e{In(1/2) )2 after falling off like
(").;_H_z'} when £ = of1). Integrating (D.6a) between
a sufficiently large value of 6 and 6, = 0(t = 7/2)
we obtain: .

|Rap, -(685) — Rag, -(0)]

.f’.’f
_ ol sb / { ;{( H:IJ —|—_{!I|: H”{EH_ ':DT.'
p

Jb
If we choose || > 7 for 0 < & < 3/8. the
integrals in Eq. (D.7) are less than const x £2%/3:
it & = 3/8 {(i.e. t = O(1). they are even less

than ¢-|_.11.~'t'\_.f'?{111{1;".5))3 (the terms with g(#) are
dominant),

Thus. we must now show that the difference
of the solutions of the limiting equations (D.4a)
and (D.A4b) to those of the exact equations (D.Ga)
and (D.6b) at such values of 8 vanishes as = — 0.
To this end. we write (D.4a). (D.4b). (D.6a). (D.6b)
in a more explicit form (the precise values of the

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

coefficients mav be obtained from an algebraie
manipulation program. but they are of no fmpor-
tance for the present purpose). For instance. (D.6a)
reads:

ARy .

df

where P(z) is a trigonometric polvnomial of » =
! + &y (6). The further terms contain higher pow-
ers of k&(#) and products of k(#) or its derivatives
with g(#). Equation (D.4a) is similar: the same
polvnomials in > occur, but (as in (D.1a), (D.1b)),
Xp(t) is replaced by the leading term of the inner
expansion (63), i.e. for large 6. k() ~ const/§%/°,
From Eqs. (49). (65) we see that, for large 7. the
difference:

Ijlr-{li_ T:‘II — TJ"I."{ ) () (‘.-_':I“.'J .'PT";:{. f—l.._:":'{) A I‘D!(_"I

= k(0)*RL (0’ Pi(z)+--- (D)

Equation (D.9) allows us to estimate the differences
between the various coefficients of Eq. (D.8) and its
analogon (D .4a). We notice that the differenices have
to be estimated at a fixed value of #. which corre-
sponds to different values of 7 denoted by 7(0.8).

T(z.#) In taurn. in the sitnations = = 0 and finite =
(cf. also Appendix C. Eq. (C.13)). The value of
corresponding to € at = = 0 is given by (D.3) but

for finite e, it is the solution of

f = \E/ el Tf;ltf.'_!
Jm

3 \.f’ﬁ 1/9 oA )
== -—.'_L'J’l:l + ) ';"{" ].'_Z:I:I |:D,1“:I
where we have nsed the estimate (D.9) for np(7).
For small = and 7 < 7%, § < 3/8. one obtains:
e g e A 2 .
TE, H,I =9 ll.1!' tq!ll‘.l =+ (()ll gl f.“. !{7]; ). |‘l]:},ll.,l
Using this in {D.9) one gets an estimate:

nr(T(e,0)) = 7(0,8)" (1 + O(=*1(0,6)))

(D.12)

which shows that in evaluating orders of magnitndes
of differences at fixed #. one may replace 7(z.8) by
(0. 8) of (D.3). Let

ARy (0) = Ry -(P) — Rypp(#)

1330006-58

, , (D.13a)
ARy (0) = Rp.(0) — R o(0)
rd gid
e SN SN i a2 v 2 1
g 0 = oy -(0) + 3 k(0" Ry (6)7dd
=T J0
(D.13h)
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Adyr(8) = 04r.:(0) — d41.0(0)
_ (D.13¢)
.ﬁ(.');‘ (7)) =or - |:{’7]J| - f_'JJ;_Ii-,l"Hj
and & . be related to ¢ . by (179). Subtracting
from each other equations like {D.8) and their coun-

terparts for ¢ = 0 and using the nniform bounded-
ness with respect to = of Ry (#) one obtains
dAR
71 b ‘;/, o=t ,AI: ;.‘(1(7':] 11'I
do
+a (0)AR, + W (#)Aoy (D.14a)
F;I.Af_? N , |
———— < const A(k(O))
dg
+as (AR, + () Aoy, (D.14b)

Adyp < Ao LT,

i 0
+ L,ﬁ/ fi'lfﬁ]lgf—i';‘(H']ZEEH. (D.14¢)
3_]: Ja 5 = s /

In Eqs. (D.14a). (D.14b). the functions a;(#). b, (#)
are sumns over the various f-dependent coefficients
in (D.6a). (D.6b) multiplied by constants obtained
from the simple estimates |F;(2)] < const. As long
as t is confined to an nterval (=7 <t < C.). (. —
0 as ¢ — 0. the dominant term is of O(kY) =
O(#3?), so that we may assume this is the order
of magnitude of a;(8).0,(#) in (D.14a). (D.14b).
From a repeated application of the “nverse” equa-
tions (123a). (123b) we mav express AR, Aoy in
terins of ARy . Aoy through:

Af]’]{_ = .ﬁirl'”_(l + O L0V

1
LR

+ Aoy O(RE)) + O(AR(H)) (D.15a)

Aoy = ARU‘()(: k(6 )+ Aoy, (1+ Ok

+ O(Ak(B)). (D.15b)

Upon substitution in (D.14a). (D.14h). one verifies
that the estimates remain unchanged if we replace
AR, Aep by ARy, Acyr and also the order
of magnitude of the coefficients is preserved (we
keep the notation unchanged). To replace further
Adur by Adyy we need a bound on the integral
in (D.14e). If A is a boomd on By, Rpg we obtain.
using (D.15a). (D.15b):

gt
/ ﬁ(ﬁ,'zﬂ_;‘_}!d(f
J 1

o) i
< M? / (AR d(0') + 2M / K°AR (0 dd
S J0

-
II\ZAL']L l"FH‘f

JU

o
5_1[2/ (AKY2d(0') + C /
J 0O
-1 _
+ (wl_) / L"—{.A(_'?H‘E]'EH!

.0 .0
+ Yy / k('Y do' / A{E*R3)d0" (D.16)
JO J0

with ). (%, 'y constants pertaining to the O()
terms in (D.156a). (D.15b). If we invert the order of
mtegration in the last term and realize that. for a
sufficiently high 7. it is true that, for all 0 < & < 6:

-7
1 -4 / F’i‘(ﬁﬁ _:I:J'JEHH

70

- .
3 " C 3
>1-04 / FBrdo” > 1 — ——

1
) T
> const > 0

we may conclude that:

pll

/ A(K2R2\d6

o W
< const (/ {AF,-F;M’ + / F’;z.ﬁﬂ.mdﬁf
A

i 0

-1}
+ / A*";\G”‘:M’),
Jo

This allows us to obtain ineqnalities like (D.14a).
(D.14b) only in terms of Ryp. dur. We integrate
now the resulting inequality in (D.14a) from 6 = 0
to & and mrerchanee the order of integration. One
obtains:

ID I8

AR (0)] < [AR(0)] + T(6)

«
+ / | |"H. r(fj:l,-"_\.ﬂ”_ (f'fl:]{,l_r(:f'!
J0

g
—|—/ -!"-__fl,"g.HI"J,-"'_\{_")];_I"HJJJHJ (D.19)
Jo

where the dominant terms are now originating
in (D.16): e.g. using the notation in (D.14a)

ol el
T = / .ﬂf.;!’z.:ll"'ﬁf ;IHPHJ / h] I:HN\‘.IH_?HH
Jo ' Jovo

= O340 (D.20)
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and
7
|{'] |l i, i 1= ;\'I: i | 2 / ay g .'Im"f?w
' - 4o o
=0 (D.21)
In (D.20) we have used the estimate (D.12) of 5jp(7):
T (T(0))2
1 1 i
= const —
Tfﬂ,l l:_]_ £l .;—I:'-.' l ?—2}::'.
= O(e¥ 7). (D.22)

Estimates similar to (D.21) hold for eu(#.8") and

for the coecfficients appearing in the mequality for

Aoy analogous to (D.19). Defining:
Aa(l) = |AR” ||’H'_‘I|| + JH..\TJHI'Q”

and adding (D.19) and its analogon for Aoy one
obtains:

]

Ac(0) < T\ (0) + / d(#')Aa(@')dd'  (D.24)

S
where T1(#) obevs an estimate like (D.20) and
d(#) an estimate like (D.21). Gronwall's inequality
implies then:

_\.KJ'IH‘I = O __,:J..-"'l g:’, /4 i I:D‘_'_)I'J\I

and thus vanishes as ¢ — 0 on intervals of # of
order = /% with 6 < 3/8. With this, the differ-
ence between the value Ry (t = 7/2) = Ry, ()
and the asviptotic value Ry ¢(0) obtained from
the equation with = =0 is:

|Riz.p(c) — Rap ¢ (0)]

< |R”_,_,":_f ) — By ()]
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+ |Ryp - (8) — Ryp0(6)]

+ | Ry 0(8) — Ry ¢(0)].  (D.26)

For 8 = O(=%/3), § < 3/8. the first term is
O3y (cf. the comments on (D.7)). the sec-
ond term is O(3/1-50/3) (¢f, Eq. (D.25)) and the
third term is also of O(8~12) = O(=2*/%). For any
choice of & < 3/8, the difference (D.26) vanishes
as = — (. Inverting the transformations leading
from Ry (0) to Ry (0). this result holds also for the
original variables Ry, By g. because k(#) approaches
k(e = 0.6) = 1/7(0)1/? as = — 0 on the whole
rinterval [1,7/2/¢%/®

1. We obtain thus the state-
ment of Lemma 6.1, From this argnment it follows

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061

that the asymptotic value of Ry (#) is approached
closely even in the “transition domain”™ between the
boundary laver region and where + = O(1). This
limiting value for H; mav be obtained once for all
by solving the boundary laver equation for X (¢)
for ¢+ > 0 using for Xp(f) the simple approxima-
tion Xp(t) ~ &1/8 noo(7) and looking at the asymp-
totic value of Rp(#). It turns out to be ~ 0.844.
Clearly. the same argument as above serves to show
that the phase difference Aoy (f) tends to zero as
¢ — 0 and thus justifies the contents of Lemma 6.3.
The limiting value c:_w“__,.--f”]u depends on the choice
of 7 (the origin of the variable 8p: for 7 = 15.
{._'-JL_ ((0) ~ 0.14).

E. The Evaluation of Some Integrals

In this Appendie we drop for simplicity the index
L used in See. 6: R(#) = Ry -(8). ete. To eval-
nate (217) we add and subtract R(8(w/2))(0R/
JR)(A) and we are thus led to the evaluation of
the integrals:

w2 i o
4 E.ZJ £ ;,-.;H;.f;_j‘;iw;. (L’(H] = (H' (3)) g
(. 1)
B{m/2)
T = / k(8)2R(0)
J0
PR aR T
[(U P) (6) — ( - R) aa )} o,
(E.2)

For 7| we use the boundedness of R/8R; and the
relation:
Ri#y = Ryt +O(k(8) (E.3)

obtained by iteration of (123a), (123b) to obtain:

0r/2) 9 e T
T, < const /[ k()" ‘RHH} — Ry (H (_) )‘

2
) oy

+ O(k(8))dd

Q72
< const / ko H_‘J:"'er
oL

Bl l2) ) o 2
40 / k(0")2dd / k(0" de"
| S

(0 J0

(E.4 )
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where we have used (D.7) to evaluate the differ-
enee

Ry(0) — Ry(0(m/2))| and the fact that 0R(#)

is bounded {see text following Eq. (198)). Now. both
integrals in (E.4) are bounded so that we deduce:

1) < . (E.5)
Using Lemma 6.4 we may also conclude that I, has
a limit as = — (.
For 7, we write, using (191a):
Ty =1y + 1o (E.G)

A7 /2) . IR
Io1 = k(0)*R(0) ﬂ () (1+0O(k))
) [\ 9Re '

~(GR) @(3)) (1+o(x(3)))]

(E.7T)

2 . g o J
Igg = / ;1‘({')’)'_’_{;—1'{9) : Iirq:l ()Il;‘lilqll |
Jo IRy

(30 G)) o0 G

In (E.7) we replace the difference of the values
of OR,/ORy at € and 6(x/2) by the integral over
the right-liand side of (190a). Sinece both B{(#) and
JR/OR,(#) are bounded, the integral over the first
term in (190a) converges. The second term is more
diffienlt. sinee do /oy diverges like g1/, so that
the integral from # to oo falls off like 1/6Y1: this
brings a contribution behaving like In{1/~) in Zo.
To improve on this. we use below the fact that the
polynomial Py( ) has zero mean. We expect namely
that the oscillations of Po(#) reduce the magnitude
of the integrals. Before proceeding. we move to o,
where a similar problem occurs. The second term
of the integral in (E.8) is negligible. sinee k(#8{7/2))
is exponentially small. Tn the first term. the factor
;f)¢_-;]|_.-"¢{)}_1’(:, increases like fL/A (see E(l_ (20—1” so that
the power of 1/8 under the integral is at first sight
T/8. which is not enough for convergence. However.
as remarked i relation to Eqs. (191a), (191h). the
true appearance of this term is (we leave out the
last term):

= Iz'_zl + I)-)-).
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i) ) . ) 4
I'”l = / ;a'lfg‘ll'{RJ: H :I_) { 4 { I('}:ITI: 24 :IIIH
 Jo ' S Uiy '
(E.9a)
2 = H + .g__-_?J(r‘):l ':EU[)‘,I

where T2} is a trigonometric polynomial with zero
mean (in this case. T'(2) = sin 2 4+ (1/3) s 324).
of. Eq. (123a). (123b). The property of zero mean
ensures that there exists another trigonometric
polynomial (which may be also chosen to have zero
mean }.S(zy ) so that:

s
:f"—.‘.; N

We transform then 755, bv partial integration:

I:El”;

Tl,':‘;.] ).

Aim/2)

a l"_'){_'.’] 1

Ty = k() R(9)?—= S(24)
21 I h oRo - I

{ft_')l -
!'E-’H {1

1) '
e d o, . Oy |

- — | () R*(0) = ———

.Z:' JIH ' :.I t .J f; i "L?(I;‘ |

if
(E.11)

x S{zy .‘1:19,

Now, the derivatives with respect to #in Eq. (E.11)
are affected by the increase of the rate of fallofl of
the integrand with respect to @ indeed.

dR d oy

— =0k, o
e L df $ Ry

as follows from Eqs. (176a) and (190b), and

= () |: ;1'2 )

I

Jrﬁ J

ﬁ == ,Ia’z"lu

dh? '
as follows from Eq. (D.6b). Further. the denomi-
nator 1+ doy /df is nonvanishing if only we take
the starting point 7y sufficiently large. As a con-
sequence, the ntegrals containing each of these
derivatives are absolutely convergent. The first term
is clearly bounded. so that we conclude that Ty, i
itself bounded. The same argument mav be applied
to the second term in Ty a partial integration
increases the fallofl rate of the integral from ¢ to
~o and ensures thus the boundedness of 7oy, More
over. after performing the partial integration. it is
possible to take the limit ¢ — 0. Indeed all integrals
can be seen to make sense and be finite even if we
set © = 0 formally and replace all quantities with
superseript O (corresponding to = = 0. see See. 6.2).
Moreover, the values of the integrals tend to those
for = =0 as = — 0. To see this, one notices that: (i)
since all inteerals extending from 0 te oo are abso-
lntelv convergent. the contribution of the mterval
(e75.0(m/2)). s > 0 may be made arbitrarily small.
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for = small enongh. (i) The departure of the varions (after 27 translation). Equations (F.2). (F.3)
(uantities of nterest (R(8). R /AR,(0). ete.) from show the symmetry:

their values for ¢ = 0 (indexed with a superseript - _

“07 In See. 6.2) is estimated by expressions like Bou(—2) = Baa(22)- (F.4)

0% with a > 0.b > 0 (see Eqgs. (211). (D.25)).
Their integrals over intervals (0.2 7%) are quantities
of O(c®==""T1%) This is a positive power of ¢ if
s < a/(b+1). This shows that, indeed. all integrals

In Fig. 14 we show the appearance of the solu-
tions 4o, o4(2) in the ¥ —(—/9) plane of Fig. 11.
The right-hand branch (with respect to X = 0)
corresponds to Hog( X). the left-liand one {small

are contimous at = = (), squares) to 4y, (2).
(it) For any a € (—/4, 3), the equation [ 1, ¥: v ) =
F. On the Invariant Sets of the a has two solutions with —7 < x < 7. If
Circle Map II o = \(y ) is afixed point of II. we denote its

pair by \:JI_{{_} (if the fixed point is positive.
it is denoted by y 4 > 0, otherwise by y = < 0).
(iii) According to (236), S(II) < 0. This has the
F.1. General comments consequences (see [Collet & Eckmann. 1983.
Sy < 0% for all p > 0:

In this Appendix. a proof is given for Lennna 7.2,

r . : o . 97|): (a)
We restrict ourselves to 0 < [ < it follows I ‘],’ P\ /. ; i
that we can assume —7 < x < 7. It is of some (b) |d(11”)/dx| cannot have a strictly positive
vt t6. dseuiie —1 (2-< 5 < 3 /2 and to minimun: (¢) if dI17/dy does not change sign

: st = il fasl L Laill fadk 3 E : 3 5
siite for x € [a.b] and TI” has three fixed points

there. the middle one is unstable and the other

g

3

£ 5

= =

(=3 =]

Eo

g =

22 n <

£ 2 Y= rini ¥, I{x)=—-@sin(x+X). (F.1) two are stable; () TP cannot have more than

= g & _ _ three fixed points in an interval [a,b] where

—Ji With this. Eqs. (248)-(250) for 35,. oy are dIl? /dy > 0(< 0).

L changed to the unified form:

o

a8 o . T : . : - - -

o o By sin(B2y + X) = 5 + X (mod(2m)). F.2. The situation X =

™ o .

o I - : T 4

=L i At Y = —7 (¥ = —7/2). IImav be decomposed into

e i J7—1" v

ae Bow # 5 — X = e (mod(2m))  two maps I, TT_ of [—3.0], [0, 3] into themselves.

5% - ... From nFZu (F.3) one verifies that 3y, = 314 = /2.

=0 't];-:)' T ’l 5

é_%‘ * = < 2,; R

35 o sind o — MR = :— - ¥ |I_LL1|11 (2m)). . It }J - _' ”“'_1-\ X “_ el {L\‘ d DRIL md

= ' 2 ' is a contraction (Lemma 7.1). If 4 > 1. there are

= g T & o - three fixed points. yv—. yo = 0. y+: xp is unstable.

& Pd7 5 — &= P1d UNOAET)). 1f 3 < /2, T1; contracts the interval [0,x4] into

(F.ay  itself and to xy. Indeed. on [0,x]. (i) TLi(y) is
5 monotonically inereasing, (i) I (y) — y > 0 and

The solations [32,. 4oy correspond to (“super- vanishes only at the ends, (i) T, (y) < y, since
stable”) period two orbits passing through the 0 =TI (y4) — x4 > I (x) — x4. It follows that.
maxima (at \\; =—7/2— E‘u and minima {at  for any y € [0.y+] the monotonically increasing
Y = 7/2—=3) of II{x). Eq. (F.1).3" The spec- sequence {x. (). TI2(x) .. .} has a limit which can

ification l.111“‘1 27) means for Go,. Foq that the  only be y . Further, the interval [x 1. 4] is mapped
(quantity must be transferred to the interval  into itself and (after iterations) to . Indeed, for

(—m, ) through suitable addition or subtrac- — any x in this interval. x4+ < IL4(x) < x so that
tion of 2r. The values of 31,. 314 are also soln-  the sequence {IIP(y}} converges to y,. If 3= 7/2.
tions of the equations satisfied by 35, Boq and x4 = 7/2.

mmmediately precede the latter. They play a Congsider next the interval 7/2 < 3 < .f;.- Y=
role only if they are positive and less than 7 —m) (see Fig. 14). Now vy, > 7/2 and v, < 7/2.

FTAL 3 = 1 (31g) the fixed point lies at the maximum (minimum) of Ty ).
Mlollo--oll (p times) =117,
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ha
§
o

0.5

Fig. 14. The

The iterates of any point in [0, {4 ] reach at some
stage the mterval [Vi.y4]. Indeed. the function
IT: (\) is monotonically inereasing on [0, Y 4| so that
the sequence {yv.IT, (y)... H‘i_';_ (\ ]} increases mono-
tonically until TP (y) gets larger than Y. Then the
following transformations under 1, ave obwious:

[X+:x4] = [x+: 8] = e (B).x4].  (F'5)

for 3 < Bou (X = —II).

Now,

- - #
{3 =dsinid > =

(cf. (F.2)) so that the last interval is contained in
[m/2, v+ ]. Thus 112 maps [7/2, x4 ] into itself. The
same is true for [y . /9] which is mapped by 11 into
[w/2.x+] and by 112 into itself (cf. (F.5)). It is also
true that, for y € [r/2. /9]

(M) (x) = I (4 (X)) (x) > 0; (F.7)

because ¢ < 7. This inequality is true for all 5 2
[1/2. 32,]. It follows from the property S(II) < 0
(936} that Hﬁ_
[r/2. 8].

We show now that, if 3 < 32,,) the only
invariant set of 12 in [7/2 4] is {x+}. Indeed,
v+ is the only root of H+ \) = y in [—:._r‘? {]
in this mterval of \-alm-\.w of 4 For v = w/2.

2(x) > x and for x = §3, Hi(\:u < . Thus.
for all x e_ [,-T,.;.\+]. 12 (y) > y and for all
=N L 1] Hii\) < . It follows that for
y € [7/2.x+| the sequence {y. Hi (x)...} is mono-
tonically Inereasing and ean only converge to y ..

has at most three fixed points in

.)’J{_l" 2

H-values [or superstable orbits.

Stmilarly { V2 (y) ...} is monotonically decreas-
ing for \ € [x+. ] and converges to x4+. Thus the
1:11[_\-’ variant set is indeed {\ L }

We now turn to the simation 3y < 3 < (,.
There arve now three points (y7.\ . \z) In [n /2, 8]
where 1'[“ (x) — x changes sign. Consequently. the
sequences {y. H_,_\\ ). ..} converge (monotonically
increasing or decreasing) to \p or xp according to
whether they start in [7/2. x4+] or in [y4., 3]. Now,
the image \}; of xz under I must be a fixed point
of Hf_ becanse H:_;_ (xr) = T2 ( \'}__',I =Tl (\p )= \'}‘
so that \} = yp. Thus v and an orbit of period
two exhaust the invariant sets of 1, for 4 < 45,
The diseussion of 11 is rut'a:ll_\'
above with 45, veplaced by 4.

To conelude, it ¥ = —. %, = oy and in the
mterval O < 4 < 4y, the mapping 11 has no other
wvariant sets apart from at most three fixed points
and two orbits of }u‘rim] W,

synunetric to the

F.3. The general situation

The argmments coneerning the contraction of inter-
vals to the fixed points of IT and I1° may all be taken
over from the situation ¥ = —7 of the previous sec-
tion. We deseribe only the main features.

(i) Assume ¥ = —w 49,0 < w/2. As § — 7/2,
B1.(B) — 0, Bra(X) — w, Bau(X) — /2.

(a) If 3 <
there exists a single fixed

B9,.(X) < a’;,;u. ) (m(l Ag ereases.

;gl ||(fE(J|2;{||
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point y > 0:if frther 3 < ) ““7_] =7/2-90,
then . v+ and nll 1):-111t.- in [—3. 4] are
attracted to .. It _S] > 4 = [, but
4 < 32,. then Y4 < \+ and nunder 11:

= [(8). x+] C

X+ 4]

[—; — 0, \+}

L) = As before.
this implies {Hz}" > 0 on {7/2 =4, ). For
B < 4 < B3, < O there appear two further
fixed points of I12. to which the intervals on the
left and right of x4 are contracted under I1°.
(b) If 3 = #g(X) there are two further fixed
points Y- < yo < 0, y_ is stable, y¢ unstable.
The interval [yo. Y +] is mapped eventually into
V4. \+] and further evolution is the same as
above. If 3 < 31, =7/24+45, v_ < yv_ and the
interval (x _, \g) is contracted under I to y
If 3oy = = B0 X =y and (possibly after
Iteration)

Xy x4l =

since 4y, = B, =m/2—

Nooxol = v X ]=[-F.x]

= (=) C [\— —% —f”}
The last inclusion follows from [y =
—II{=3) = H1a. A consequence of this inclu-
sion is that (IT2)' (y) = O for v € [y_. —7/2-4].
similarly to (F.7). If 4 < &g, one concludes
that the only invariant set in [—4. o] is {x-}.
If # > dp. astable orbit of period two appears,

http://www.worldsci entifi c.com/doi/pdf/10.1142/S0218127413300061
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but no other invariant sets. Thus, for ¥ &
[—m. —7/2]. the invariant set of II consists of
at most three fixed points and two arbits of
period two. The Invariant set depends on the
value of ¥ (as & approaches 7/2. the “lower”
nrbit of period two disappears).
IfY e [—x/2,0], one verifies rhar o, {E} < /2
and (y, (—7/2) = 2 (cof. Fig. 14);
'fz,; w lth equality at ¥ = 0. Further.
.-'f,‘,-{i} > 7/2 s0 that there is no fixed point in
v < 0. For all 3 < 3,,. there is only one fixed
point at y, > (), Let x = max[—3, x4 ]. (Xo <
0). The image under IT of [y, x| is [y..d].
The Iartm‘ is mapped back onto (TI{#), x4+ ) C
[—7/2 — 3. x4 ]. Since 3 < 7/2 — ¥ (the latter
is the position of the minimum), it follows as
before that (IT12) > 0 on [—7/2 — X, 4]. This
mterval may thus contain one or three fixed
points of I1?. Repeating the argument of the
previous situation, we conclude that the invari-
ant sets of IT consist of at most one fixed point
and one orbit of period two.
If Y e [0.7/2]. the situation is totally symmet-
rical to the previous one, with o7 now inter-
changed with 4, (cf. Fig. 14) and the unique
fixed point of I being now situnated at y_ < 0.
The invariant set of IT consists of at most one
fin‘_(l e int and one 2-orbit.
If ¥ e [7/2.7]. the sitnation is symmetrical
(in the sense above) to that in (i), with the
same conclusion. This ends the justification of
Lemma 7.2

Boul0) = 7/2

also 35,
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