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The paper presents a proof that the Duffing equation:

.; + 2 6 Y + y3 = r cos t

admits of an infinite sequence of bifurcation curves in the r-6 plane, alternately

of the saddle - node and odd - simply 7Jf~periodic type, whose maxima lie at large

r along the line:

1 . -. 1 ,...

6c( r) = 12 1\ In I 3 jf In In I
+ Co

withna constant C given in the text. The positions of the maxima are interlaced"o

in asymptotically equal intervals of r1f3, with a spacing of 1.403 units. For

~ '> D c(r), the Duffing equation admits of a unique periodic solution if ,-'is

large enough.
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1. Introduction

The Duffing equation:

y + 2 A Y + y3 = r cos t , Li,(1 > 0 (1.1)

is a classical nonline~r equation: it exhibits a large variety of periodic solu-

(

tions, not necessarily of the same period as the driving force, and whose number

and appearance changes with the values of the parameters L1, r . These solutions

have been weIl studied by numericalor approximate analytic methods (see e.g.

1-7 .
Refs. ). Knowledge about the periodic solutions of (1.1) is presented in a plot

in the ~ - r' plane (cf. Refs. 5-7) of the boundaries of the domains where (1. I)

admits of a certain ~e of solutions (e.g. with a given period 2~m/n). Thet

appearance of these plots is increasingly complicated, as the damping is decreased

(see, e.g. Fig.l of Ref.5). If 8 is large enough, at every fixed r , the situation

simplifies: the equation admits of a unique periodic solution. We notice that,

if (1. I) has only one periodic solution yp (t) at some .1, (~ , then yp (t) has period ...z 1I

and its Fourier series contains only odd harmonics. Indeed, ypl(t) ~ - yp(t+TI)

is also a periodie solution of (1.1) and it is, by assumption, identical to yp(t).

Assume the damping D is neither too large, nor too small (at small )' , e.g.

0.1 ,:::/.),~ 0.5) and that we increase r gradually, starting from ('. 0, where the

equation has the unique periodic solution yp • O. According to the ~ -e plots

5-7 6
of Refs. (see, e.g. Fig.3 of Ref. ) we meet in this process a sequence of

bifurcation curves from yp(t) either of the saddle - node type /),= /1 (p) (r) orSN

of the flip (odd periodic - simply periodic) type: ~ = D ip)(r )'.If ~ is not

too small, these curves are weIl separated and their type alternates; e.g. ~ =

IJ ~~) (r) intersects the line b = const in two points with abscissas r~:~N'
I' (p) and has between them a clear maximum l:i (p) at r (p). the analogous state-
R,SN SN SN '

ment is true for h.ip)(r ). When traversing a saddle - node bifurcation curve,

yp(t; r )can be .·.continuedthrough the leftboundary point r~:~Nup to r ~:~N'
where it annihilates with an (unstable) solution originating at r~:~N'In a

• ( '1-" (1">.. , ..., er) J . (p)
small 1nterval , ....~,SN , It.,t: ' the stable solut1on created at rL,SN is the

unique solution yp(t) of (1.1). ·When we traverse a flip bifurcation curve, yp(t)

loses its stability and gives rise, for r>r er)
L,F

to two stable,simply periodic
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solutions of (1. I). If fj is small enough, the latter cascade at an increase of r

Numerical evidence suggests that the sequence of bi!urcationcurves

r i~), r;p) of their maxima appear to

(Refs.6,II).

r is further increased, the process is rever-

[' I' (j') ,r: (",,)and uniqueness in a small interval I ,.. F' L SN _,") ,), .
~ (p)(r)SN '

sed and Yp(t) regains its stability

through period doubling bifurcations to an attracti~g chaotic motion, presented

5
in well-known pictures in Ref •• If

ö ~p) ( r) is infinite; the positions

b ·d· . h . bl r 1/3e equ1 1stant 1n t e var1a e

Now, the literature contains no explanation from first principles of this

12
state of facts; in particular, with one exception (Ref. ), there exists no

description of the domain of values in the 11,-:- r plane where eqn. (1.1) admits

of a unique periodic solution. In Ref.12, W. S. Loud shows, using a result of

Cartwright and Littlewood (Re!.13) that, if an harmonie term +ky is present in

(I. I), then (1.1) has a unique periodic solution at every fixed r , provided ,1

is large enough (essentially 11 '/
13

const· ,1 ); the theorem of Ref. is, however,

not readily extensible to the situation k ••0 and the limitation on !l is weak

at higher r

In this paper, we consider the case when both D. , r' are large; it turns

out that the solution of (1.1) can be approximated in a controlled manner in this

range of parameters so that we obtain a non trivial expression for the halfperiod

(i.e. t -;> t + Ji' ) Poincare mapping »_J ( r' ;,6 ) pertaining to (I. 1). This allows

us both to settle the question of uniqueness and to prove that, indeed, an infinite

sequence of bifurcation curves of alternating types does occur; these are the

1 4-7
natural continuation of those observed on the computer (Refs.' ) in an interme-

diate range of values of r . More precisely, the results are as foliows: there

exists in the D. - r plane a curve:

!J •• ~ (r) ••_.1- In rc 12Jf
I In In r

- 3rt + C + O( Inlnl" )o lnr (1.2)

where C is given in eqn. (8.2) below. so that. if A > ö (r). eqn. (1.1) admitso c

of a unique periodic solution. provided r is large enough. The (unique) maxima

6~:), IJ~p) of the bifurcation curves !1~:) (r ), ö ~p) (,) interlace and lie

asymptotically on the curve (1.2); their positions r~:),r~p) are asymptotically

equidistant in the variable r) /3, with a spacing:
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In a comparison with numerical observations, the somewhat

1.403 '"1/3 ( )1/3 ()1/3
$(1"" ) = r p -r p

F" SN

( 1)1/3 ()1/3
= r' p+ - r p

SN F

TI
1112.

{3 S'sin t11/3dt
-Tih

unexpected result is

(I .3)

the logarithmic increase of the maxima of the bifurcation curves, which has not

yet been noticed. From a theoretical point of view, it has the consequence that

for large r and ~ ne ar the curve (1.2), the Poincare map I? of (1.1) contracts

phase space indefinitely so that, as far as its periodic points (corresponding

to periodic solutions of (1.1» are concerned, it 1S asymptotically equivalent

to a onedimensional mapping; the latter turns out to be simply:

(1.4)(mod 2JI )}/: X _. :» (2 cos(t +~r)i
SI into itself, with ~, 2.: known functions of I->,!J • The

I
largest part of the paper is devoted to a derivation (and a discussion) of this

which maps the circ1e

limit; on ce it is established, the statements above on bifurcation curves are

simple consequences.

We recall that a study of the periodic solutions of eqn. (1.1) and of their

b·f . 1 Ir?· h A Id .... (R f 12,13)1 urcat10n5 at arge W1t I~ he constant 15 g1ven 1n two papers e s.

by J. G. Byatt - Smith. This limiting situation requires also extensive numerical

12 13 •
work. Several results of Refs. ' concern1ng the asymptotic expansions of special

solution50f (1.1) appear also in Sections v, VI of this paper, although obtained

in a different manner.

In many studies, eqn. (1.1) is supplemented by an harmonie term +ky. The

situation k.( 0 leads, for small r' , li to a chaotic motion that may be understood
-

to a large extent analytically (see Ref.8, §4.3,5.3). If the coefficient k is

held fixed with increasing r , it turns out that the description of the limiting

situation considered in this paper is independent (to leading order in I/r ) of

its precise value. A short discussion of the changes appearing if k ~ 0 is given

in the summary.

We introduce next the main notation, together withsome comments on the

properties of (I. I) at large r
x • y Ir 1/3, t. t - 3 jf /2

so that eqn. (1.1) becomes:

'c DeHne first:

e.l/r2/3 (l.5)



E:~ + 2 k. X + x3•• sin tI,

and r-,,,., me ans E-> o. Eqn. (1.6) is the form of Duffing's equation used

throughout this paper.
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(1.6)

Assume now that b. ••~ «(' )

as r -> 00 , r'" A / r 2/3 '> f 0 >
J

'Ne obtain:

Z •• I--x , E-

is a monotonically increasing function of \~

0, we change variables further in (1.6) to:

• If,

(1.7)

__ r~2
r 3
sin

t Z
+Z+kZ•• t

/
As

r, -? 0,itreducesto:

2z

,.. Z
3

sin
+ •••t! (1.8)

It is easy to show that, if ~ is bounded, eqn. (1.9) admits of a unique periodici
solution which can be improved by straightforward iteration of (1.8) to a periodic

solution zp(t) of the latterj further, zp(t) is unique (see Sect. IX).

However, if ,l.. -) 0 as f -'> 0, eqn. (1.6) reduces in this 1imi t to:

3
x "'sin t

with the solution:

x (t) •• (sin t)I/300

(I.JO)

(1.11)

Corrections to x (t) cannot be obtained by iterating eqn. (1.6), SlDce the deri­00

vatives of x (t) at t •••0 are not finite. We expect nevertheless (1.11) to be a00

good approximation to periodic solutions of (1.6) away from t •••O. The depertures

of the solutions of (1.6) from (1.11) near t •••0 are obtained by a boundary layer

analysis: let:

+ 2 ~
dr:

t •• r 3/5 z

so that (1.6) becomes:

E d2J
,...8/5 dJ

x •••. ,kI /5.~, I LI

3 -3/5 3/5 1"6/5 3
+ 1. • t siu('(; f ). z: - i6 r +•••

(I. 12)

(l • 13)

. 6/5 '

To zeroth order 1n t ' we are interested in that solution of (I.D) which behaves

like -C1/3 as 7:->-.,.-> , so that it matches xoo(t). If E.I r 8/5 -+ 0 as E.-O (Le.

~/ r I/4 _><-_ ), this solution is obtained by perturbing that of:

2 * + 13 •••

If hAI r I14 _... 0, owever, u 7'

quantities are:

as f' ~ 0, the appropriate boundary layer

(1.14)
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1/8
x .., E '(

in te~s of which (1.6) becomes:

(1.15)

d2"1 d 3d +21* +1
As t'-' 0,. the solutions of (1.16) obeying

tory as L ~ 1" oe and are damped in a "time"

1/3
"1 (z)·- r as 'L---ooO are oscilla-

L: ~ 1/1'-:> 000

show that situations (i), (ii) lead to unique periodic

We distinguish thus three regimes of (1.6) for large
r

f -} 0; (ii) t < f-'- and
, 0I

.ci as (-) O. We shallo

f /t 8/5 <
const as

(i) t '>t 0 > 0 as

E -> 0; (iii) h -) 0, t = t /[.5/8I .

solutions of (1.6) for r large; the transition to nonuniqueness occurs in (iii)

(cf. eqn. (1.2». Since the latter is the main concern of this paper, we shall

assume throughout (except for Section IX) that 1'". D /(' 1/4 ~ "t o as t. -:> 0

and use the notation (1.15). In view of (1.2), we find it convenient to use 1n

the domain (iii) instead of ~ the variable:~!
k "" (1.17)

f -~ O.

3 jj.= --
2 In e

r
I 1

E. In c
when k ~ 1 asso that bifurcations occur

The paper is organizad as foliows: in Section 11, we give general preparatory

statements on the solutions of (1.6) and on the way they approach each other.

Section 111 introduces the inner and outer expansions associated to (1.6); these

are combined and improved to two special, nonoscillatory solutions

~ (t), XR(t) of (1.6), defined for t<.0, t"7 0 in turn. These solutions are taken

as references for t<.0, t ';7 0 and the Poincare" map is defined in terms of the

differences:

t';70 (l .18)

In Section IV, we give apreeise bound, depending on f- , on the region D( f..) of

phase space where invariant sets of the map IP may exist. Sections V and VI

establish a controlled approximate expression for 1P (E, ;k). Section VII discusses

the limiting form·Jf of IP ( f:. ; k) as L -;, 0, eqn. (1.4), and Section VIII
~

the extent to which the properties of JI may be transferred to statements on

1"' (i:;k) for small, nonzero ~ • In particular, we establish the announced pro­

perties concerning the bifurcation lines of 1P and the uniqueness of the solution
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'\
( ) A r 1/4 . 11 S . IX h· f hfor L\ r < '-' < const· . F1na y, ect10n proves t e un1queness 0 t ec

periodic solution in the asymptotic domains (i),(ii) of parameter va1ues. An

informal discussion of the resu1ts ss given in Section X.

Refs.14,15 contain a more detailed treatment of some items (in particular

of'Section IX)

11. General preparation

Lemma2. I There exists

D :

a rectangle:
B

\ dx \ <_2, dt fZ (2.1 )

so that a11 solution'paths (x(t), ~(t» of (J .6) eventua11y get inside it. The

are sufficiently small.

E~ 0 and consider the

E/kI

< const, as

if E and

given by: (p = dx/dt)

/r'
(I... \ E-i
<f' (p ;x; t)

AssumeProof:

(Liapunov) function

constants BI,B2 are independent of t'r
". fj / r 1/3

(2.2)

(2.3)

(2.4)

(2.5)

1~(p;x;t)
=exp [-L(p;x;t)]

L

(p;x; t)= E(p;x;t)+D(p;x;t)
2

4
E

(p;x;t) R.'x- x sin t= +
2 4

D(p;x;t) o if P '/ max[(lxi/ t,.. ) 1/2, (A/I...)1/2 J!

E.(p - (xl r )1/2) if i pl <: (I xl /,4-- ) 1/2 , x';>A

= - 2 E-(x/ r )1/2 if p < -(x/}) I /2, x / A

". - 2 e. (x/~)qxll.~)1/2 if p ~ -(A/~)1/2,\xl< A
j !

= 2 E.(\Xl/t )1/2 if P<_(IXI/1r-)1/2 , x< -A

". - E.(p - (\x1/r-)1/2) if Ipl«\xl/r-)1/2, x<-A
J i

Differentiation of (2.2) and use of (1.6) establishes that, provided ~ and ~~

are sufficiently sma11:. (a) e:p ~ 0 as lxI, IPI-c>O , uniformly in a11 directions

and with respect to t, for a11 t; (b) dp/dt(p;x;t»,~70 for all t outside a

rectangle D1: \ x\<_A,\p\ < (A/t>I/2, e.g.tor A"'7 3; (c) 'cp. '> 0 outside DI• By

a w~ll known theorem (Ref. 16, p.37I,ch. VII,f3), there exhu under hypotheses (a),

(b), (c) on p a rectangle (2. J), containing D1 in its interior, so that all so-

lution:,paths eventually come into it. The parameters of the rectangle D, eqn. (2.1)

may be inferred from those of (2.1) as follows: let:
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•• min
t min cf (PjX; t)

p,x~';)D!
(2.6)

(2.7)p (p;x;t)

and choose D so that:

J:. • max max':t' 02 t p,x e oD

obeys <:f 02 < cf 01' One verifies that BI ~3, B2::' 9 satisfy this.

If r 1/3/!J. > I, a function 4' with properties (a), (b) , (c) may be taken '

directly from Ref.16, p. 377 (with obvious changes), in an example due to G. Reuter

(Ref.17). This ends the proof.

CODDllent 2. I: The boundary Une DIr I13 •.• appearing in the proof of

Lemma2.1 runs inside the asymptotic domain (ii) ofth~ parameters ~,~
Introduction. It plays a role also below.

of the

The following places abound on the manner in which two solutionsx (t),o

x(t)of (1.6) approach each other, once they are in D. For simplicity assume that,

if t. < A, eqn. (1.6) admits of solutions x (t; E ) -which stay in D for t > t (E,)." 0 0
J

and obey:

(HI) There exist a,b 70, independent of E , so that

Idt' < b, for t ~[tl ,t2] , with 0< tl c:: t2 ~ JT (mod J1),

"'x (t ; E- ) I '/' a, 1dx (t; (. )o 0

t » t (€.) •o

It is easy to obtainSbch solutions (see Section III). With this, for any

other x(t), staying in D for t ) to ( E- ), we may state:

LeDDna2.2: Assume rl E..1/2 = t1 1 r 1/3 < A and LI,f •• 11 IJ. --:> 0 as t-~ O.
Then, for e sufficiently small, there exist constants k, C, independent of f- ,

so that, for t (; [t I' t2] :

max Llx(t) - xo(t)l, t;.1/2 I dx/dt(t) - dx/dt(t)1 < K exp [- Ct(t - tl)/e:] (2.8)
Proof: Let C < land:

., (2.9)

it verifies:

e. ;; + 2 r ~(1 - C) + u [3x~(t) + (C2 - 2C) r2/r.]

+ u3exp[- 2Cr(t" tl)te]
Considet the Liapunov function:

1 . . • - 2
Lu -2 (e. u + 2, C u)+ E,G(u, t)

- 0 (2.10)

(2.11)

withC- 1 - C and:



G(u,t) ••J u' F(u',t) du'
(>

-8-

(2.12)

(2.13)

where uF(u,t) denotes the last three terms,of (2.10). The forms F(u,t), G(u,t) are

positive definite for t f [tl,t21 if C < a2/(SA2). Using (2.10) we obtain:

dLu - ( 2 f.. 'd G ) - Zdt - - 2 }1. C u F(u, t) - --_ ~ • - 2t C u H(u, t)
. I 2tC .

It is easy to verify that, if, e.g. C<: min (3/4, a2/(BAZ»)and r../t •• 1/t!> is

small enough, then H(u,t) is positive definite for t ~ [tl,t2). Thus, the solution
•

p,aths (u,u) of (Z. lO).stay contained in the bounded domain:

L (t) <:u (2.14 )

for t f (tl ,tz1. But Lu(tl) •• O( f.); therefQre G(u,t) •••0(1) for t €[t} ,tZ] and,

since G(u,t) • u2 FI(u,t) with FI strictly positive definite, it follows that

u - 0(1) for t f. [tl ,tZ] • Further, since . E:.. Ü + Zt CU" O( f. l/Z), we obtain

u •• 0(1/ f-I/Z) for t( [tl,tZ]' Returning to (Z.9), we obtain (2.B).

Cotmllent2.2: A similar statement is valid if B [..l/Z< r < A (Br 1/3< ~ < A('2/3)!
but we shall not need it below.

Cotmllent2.3 : With the notation- (1.17), the difference v(t) •• x(t) - x (t)----- 0

obeys eventual1y on u:l,t2] (mod 25 ):

\ v(t) \ < K €.kC(t-tl) Idv/dtl <: K t- -1/2 E. kC(t-t1) (2.15 )

so that, if k •• 0(1) and sufficiently small, although \v(t)l ~ 0 as f, --'> 0, this

may not be true for the derivatives. This may indicate, why the asymptotic "line"

k ~ I plays a special role.

From Section 111 up to Sect. VIII we shall ortly be coneerned with the situation

.1<cr1/4•

IU. Inner and outer expansions. Existenee of some special solutions (.1<'Cr' 1/4)

If t lies away from n1l, we may iterate eqn. (1.6) formally, starting with

(I .J I); weexpeet that, forsmaU € , t sud It I ';>0 (mod jf ) .a solution of (l. 6)
exists elose to the"formal expansion (the "outer expansion"):

;;':0 xo(t). Z kk t1 ~l(t) (3.1)k,l ~O I

with xoo(t) of (J.I J) ,m:

xlo(t) , ete. (3.2)
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In general, we may state:

Lennna3.1: ~l(t) '" tl/3 - 5k/3 - 81/3 Z ~lqt2q (3.3)q

where the surn is uniformly and absolutely eonvergent on f:1i +6, Ti .0.<)], for any 6 > O.

The proof is straightforward by induetion. Wewrite in the following x(K,L)o

for (4.1) with the sum restrieted to k~K, l~L •.

If A < Crl/4, a formal "inner" expansion may be obtained from (1.15), (1.16)

(3.4)

as:

where the

() 1/8/y) ( ) 1/8 )l 3q/4 t1'J ( t)~iL t '" f. (L t "'.e ~E. (qL L;. q

~ qL( 't ; t) are those solutions behaving in turn like t' 2q+1/3 as t" ---:--

of the equations:

d210
dZ2

(3.5)

Coneerning (3.4), we have thefollowing:

-2
6· ,ete •. (3.6)

Lennna3.2:· Expansion (3.4) is weH defined, Le. the solutions (1t.(Z)

oecurring in it exist~and are unique. The asymptotic expansion of the (qSZ) as

<: -'>-oe> is given by:

. ('t)~z:2q+I/321 r-Sk/3-81/3tk (3.7)'lqL kt ~lq)

whel::e.<)dqare ~~h~,~ eonstants as those of '(3.3).

The proof is given in Appendix A. Wedenote x~i)the sum in (3.4) limited to

q ~ Q •

Connnent3.1: For ~ large positive, the solutions of (3.5),(3.6) are oseilla­

tory and are dampedon a T - time seale l/t >:> I, so that there is a marked dif-

ferenee between the behaviour of the '1) ('t) for <:" ...,,-,p and 't" ..• + ••••• This justifiesl ql.

the index "L" in (3.4).'

With the help of the finite vers ions of (3.1) and (3.4), we set up an

approximant to a sp~cial solution of

• X oL (t; e.0(

;E;-<)

(1.6): eonsider to this end (Refs.18,19)

(t) + 1i (t; e.O<) x:~~)(t) (3.8)

Cl t suppot'ted 01'1 r -Jt/2 t -a E;-<] .and

<: b; tor - :i"12
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(3.9)

Now, .Xa ••(t) is not a solution of Duffing I s equation on - jj/2 < t < 0 but is uniformly

very close to a solution, for small €,k : indeed:(i) x(K,L)(t) verifies (1.6)/ o.

up to terms of 0«E7-e~/~)-L+~ +"(tlt.;t)13·/~1-!).".1 (cL Lemma 3.l)j (ii) x~Q)(t)

verifies (1.16) up to terms of O( t;3(Q+I)/4+1/8 L (2Q+3)/3) j (iii) on the iilterval

[-b,-aJ (,0(, the difference x~Q)(t) - x(K,L)(t) is of O(t:C:P), with p. min(K,L,Q);c~c.10

this is a consequence of the identity of the coefficients ~l in the expansionsq .

(3.3),(3.7), as asserted by Lemma 3.2. To express this quantitatively, let:

~(x)". c·; + 2 ,;k x + x3 - sin t (3.10)

denote the action of the "Duffing operator" on functions of class C2• With the

.14 31
help of the above observatl.ons (see Refs.' . for calculational details), we can

state:

sup / ~ (x L)(t) I <
-Jfj2<t< 0 a

with P • min (K,L~Q).

Lemma 3.3:
There exist constants co'cl-> 0, independent of ~,t 'so that

(3.11)

To prove that a solution ~(tjK,L,QjE.,t) ~ ~(i jE.) exists, approximated

as close as w~ wish by xaL(t) for ~ll ~,~ ' provided only we take P sufficiently

large, we proceed in a standard manner: let r(t) be of class C2 and obeying

r(-JI/2) • dr/dt(-Jl/2) = 0, write:

~(t) = xaL(t) + r(t)
(3.12)

(3.13)

(3. J 4)

and show that the integral equation:

I Si;" vI (tl) v2(t) - vI (t)v2(tl) 2 3r(t) • - "l ---------- ( ~ (xaL) + 3 ~t:r + t )dt
-1i/2 W ( v I ' v2 )

admits of a solution in a sup - ball (including the first two derivatives) of radius

E.c2P, for some c2/ O. In (3.13), vJ(t),v2(t) are two independent solutions

of the variational equation to (J.6) around Xa~(t):

,- k • 2€. v + 2 F v + 3 x~~ v • 0

and W is their Wronskian.

statement on a coarse bound

solutions of

their behaviour.
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Let to this end in (3.14):

v(t) •• w(t) exp[- ~ (t + JI /2)J (3.15)

and deHne, with (;',1 of (1.15):

t(t:)'= (3 x~ - (2/& )[;-1/4 == 31:L:'. _,2 (3.16)

. Further, let v~~~(t) be the WKBfunctions: .-(,,;

v ~~~( <:: ; & ) •• P -1 /4 ( ~ )( ~~:) [Jrl/ 2( t" ') dt"' J (3. 17)
Z'

where ~0 > ° is' chosen so that cf">° for Z"< - z::o. Since 7. L«(;' ) - 7;1/3
for large IZ' I, such a choice of e-. is alvays possible ii 6 < Cr 1/4 (f < f ).o 0

. I (W)( / 1/16 -/ 3/8Notl.ce: vI 2 t) -& at t •• -Jl 2 and 1 at Itl E • Let nov vI 2(t) be, . ,
those solutions of (3.14) such that the corresponding vI 2(~) (by (3.15» obeyat. ,
t -= - Ji'/2 the same boundary condi dons as w~~~( Z;) of (3. 17). I t i s easy to

verify (Refs. 20,21) that the v1,2 ("C) ar~ solutions of the inte~al equations:

WI,2et" ; 6) • W~~~(r ; 6) + t-I/4 (r >J R(f) t -1/4 ( r') SinQtl/2 (r")d<'] w1,2(r';6:
-1!t:-3/&

.2 xdr' (3.18)

(3.19)

,. -.,
2

R(f) = ]56 p-3(~~) _ .!. d2ep .J... -2
4 dl T

help of (3.7), we c.an establish <t(c ) "'.3'l:2/3, R(ep)_C-8/3; inWith the

vith:

these estimates, it is essential that xaL(t) is a smooth function, vith bounded

derivatives with respect to z; • Care is. required ifc:f (t) has oscillatiollS •

(see aef.14). From (3.18), ve can obtain bounds on IVl,2(~;C) - V~~~(L;S»)and
deduce:

Lemma 3.6:
-J;

If - E. < 'Z' < 0, for ~ sufficiently amal1, the solutions

wl 2( 'Z: ; ~) of (3.18) and their derivatives vith respect to ~ have a uniform limit,
as e - 0.

The straightforward proof and estimates fo~ the convergence are given in

Appendix B.

as one vishes, by letting P be large

ball of radiu8ec2P into it8elf, for
Since slipI~(xa~~'(t>lcanbe

eno~gh, eqnii;J(3:11) i8>a

Returning tlov'to themain stream., Le. toeqn. (3.13), ve notice:

~ W(vl,v2) •• 6-3/8 exp[-2& (t+ji/2)] (3.20)

,1 -5/8so that we .13) uniformlyon [- jj /2 ,OJ by const ••€' •
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of a solution XL(t;K,L,Q; t:) uniformly

d ° 0 • b h - c2J? . r: -/2 ]two envatlv~s- ett~r tan'E. "on.:. t--:J1 ,9-':;

c2 sufficiently small. After evaluating the departure of the
. 14

from those of xaL(t) (see Ref. for details) we can state:

Theorem 3.1: Eqn. (1.6) admits

approximated togethe~'with tts first

derivatives of XL(t)

b~ ~I..(t), (eq~.:;"(3.8) and which obeys: ~(-Jf/2) ~ x.H.(-Jf/2), dXL/dt(-JI/2) ••
~

dXdL-/dt(-JI /2).

Weturn next to the interval r., o. Wewould like to obtain a solution analo-

gous to XL(t) for t > 0, by matching the out er expansion (3.1) to a suitable

inner expansion 1R( t:) of (I. 16). The latter is not simply the continuation of

1L(L ), eqn. (3.4)" (see Comment3.1); further, a11 solutions of (3.5), (3.6)
behave 11°ke ~ 2Q+I/3 .a·s ?-. - '--- th t t 1 tOt b th~ '-- T" - , so a - we canno se ec un1que erms y e

boundary condition. Whereas the osci11ations of most scilutions ~q(1: ) die out
in a time Z -i~l,there exist some for which the amplitude of the oscillations

-J' -1 ...{'-r+1for L<' is less than const· 0 , for any giyen r /' o. Indeed, look for a

solution

where the

10R(~) of (3.~) in the

{OR( z)= k~7 ok fk

7. ok(1:) are, in turn,
dZ')]loo 3

-d-Z;-Z - + t 00

form:

+ _tr+1 (r)v(q:::(O (z-)+u(c:-)

the solutions behaving like TI/3 - 5k/3 of:

(3.21)

(3.ZZ)

3 tlJZ+ lOO Lol
.. - , etc. (3.23)

Clearly, since the damping terms are absent from (3.22-23), solutions with the

required asymptotic behaviour (and corrections falling off sufficiently rapidly)

are uniqueIy defined. The function v(~)}in (3.21) may be taken as any bounded solu-

for Iarge r:. It is easy to verify that such solutions

don

where

(for 't"., 0) of:
2 "2

d v 2 i dv 3 '(r) "-3 (r) tr+1 2 12r+2-2 + - + v+ '? v +d~ d'l: 0 t0
- . "1/3-5(r+1 )13

k("l" ).v L

3v - k( 'Z::) (3.24)

exist,for 'f smaii enough (cf. Lemma4.3 beIow).

asymptotic beh4viour o! the (OR('t) is obtained as follows:
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~ 1/3 - 5k/3 - 81/3
'( ok r-J ~ ~lo z:

(3.25)

so that, for

'toR

L)~ , sufficiently large, but independent of E , i~ is true thato

-2 ik70k,.t: I ~ C(L)(lr+1 + 7;1/3-5(l;+1)/3 ) (3.26)I(~L

where iY) .' is anL - truncation of the sum in (3.25). If r"/ 1101+6,6 >0,(ok, •.L. .

it is:~:;'~o show (bYLiapuno~meth~~S) that '10R(t) -t~r)('l:)l=:IU(Z:)( <
ir+1k(z) (cf. (3.21», so that we can replace the right handside of (3.26)

through the rest after an (r,L) truncation of (3.7) withq - o.

In a ~trictly similar manner, we derive solutions tqR(~) of (3.6) andanalo-
gues.

and an

Wewrite then an inner expansion:
«

x~~)(t) = E 1/8Z '1qR(~) E3q/4 = € 1/8 "/:(t)
. 1=i l

1/4approximant to a solution of (t. 3) for t"/ 0',. 6 < Cr
x (t) = '1; .(t°f:"') x~Q)(t) + I/ (~.€ •.•.) x(K,L)(t)aR- -\.l' 1R -{oR' 0

as:

(3.27)

(3.28)

where :t oR is analogous to 'k oL of (3.8), :t i + lOR = I for O~ t~ jf /2. If the

power b( defining the interval [a,b] EO< where the matching of xiR' Xo is performed

is such that E 0< -3/8 > 1/ t , the relevant asymptotic expansion of &-1/8x~~)

for the calculation of :z.....<x R) is the same as that of E--1/8xi~), cl. eqn.(3.7).-"'."a

Thus, I~ (xaR)/'" I~ (xaL)I, if the truncation numbers Q,K,L are the same. This

situationoccurs at high damping (near the line ~ .....crl/4). If, however,

0<-3/8 I/f . h - °f All" k .E < as 1S t e case 1 , e.g. D •....C n , we must ta e 1nto account

the additional term 0(tr+1) ,eqn. (3.26), in the calculation of ~ (xaR). However,

in this situation,l-Eq, for some q '/0, so that: we can state, in analogy to

Lemma3.3:

(3.29)

Lemma3.5: Let P • min (Q,K,L), S = min(Q,K,L,r). Then:

sup 1:6 (x R)(t)/ = O( &cIP(S»
O<.t,,:i/2 _ a

for some Cl > 0; the estimate in brackets is valid if ßO< -3/8 < 1/1.

Wecan now establish the existence of a sOlution~(t;Q,K,L,r;E:,t) of (t .6),
as close uniformly ~s we wish (together with its first two derivatives) on [O,~/~

to xaR(t) (providedP(S)<are large enough). The procedure is the same as the

Theorem 3.1. The solutions .vI 2 of (3.14): .. "

.' (eqIl.(3.15» obeytbe same initial

for proving the existence of ~.

.chosen so··thatthe cOrr4!SI)Olllding
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conditions as the WKBfunctions (3.19) at t = Jj 12. F~rther, the function <p (~ ),

eqn. (3.16), obtained from (aR( L) has nowoS,cillations of frequency -z: 1/3 and
. d .J' r+ I . 1 1.1'- • f . ff·· 1 .ampl1tu e ~ • on a t1me sca e I • ; 1 r 1S su 1c1ent y large, the est1mates

for (3.19) are nevertheless the same as for xaL'
- At

Due to the damping factor e in v1,Z(t), we are constrained to choose the

initial conditions for ~(t) (the same as forxaR(t» at t = 0, rather than at

t = Ji IZ, unless the quantity k, eqn. (1.7),is 0(1). Indeed, the kernel of (3.13)

cannot otherwise be bounded in a use~ul manner. Wecari thus only state:

Theorem3.Z: Eqn. (1.6) admits of a solution ~(t;Q,K,L,r; E,/) uniformly
• d h· h· f . .' d· . b h cZP(S)approx1mate , toget er W1t 1tS 1rst two er1vat1ves, etter t an S on

[O,Ji IZJ by xaR(t), eqn. (3.Z8) and obeying XR(t=O)= xaR(t=O), d~/dt(t=O) =

dxaR/dt (t=O).

Connnent3.Z: Although xaR(JlIZ)_= - xaL(-Y/Z), it is not true that xR(Ji/Z)

= - ~(-JTIZ), because of the different choice of initial conditions. The same is

true for the derivatives. Wecan thus only state that, for söme c > 0:

XR(Ji/Z) + ~ (- Xli) 0::: AI(E:) = O( E cP(S»+ 0 (3.30)

dX dx..2(Ji IZ) + --=.:!!.(4.)iIZ) = AZ(€-) = O(EcP(S» ., 0 (3.31)dt d t

Comment3.3: If~k!.&)~ eqn.' (1.17) is 0(1), we can make AI(l~) - AZ(C) =: 0

(cf. Ref.15). Since the quantity peS) in (3.30),(3.31) is at our disposal, we

(3.32)

(3.33)

2 d ~ Id?; (0) •(00

also öf the following·so1utions:

enough. For

maynevertheless keep AI' AZ nonzero in the following.

Comment3.4: Notice, at 'l: - 0, ~(O) •••f-1/8[-loo('Z: -0) + O(1)J, dXR/dT:(e -0)

= f-1/8[dloo/d"C("C -0) + OCr)1. But: ~(O)~ct:1/81 OL("C·O;t), d~/d'Z: (~=O) •••

1/8[ 3/4,1 .J-
E- d 'ZoL/d'Z:(Z:--0) + O( oS )J. Now, 1 oL(z: •.•0) -100L (<= - 0) + O( I ), where

"1 L is the solution of (3.22) with the boundary condition "'J (L) -'Z; 1/3 asLOO looL

7: ---"> • It is easy to- see that 'VJ L(7:) •• - ~ (-~). Since 7. ('Z: -0) ., o.lOO lOO 00

d "'. Id oe ('Z: -0) .; 0, it follows that:lOO .

~('Z:"O) -~(~-O);; [:.1/8/)'( .,0

~( z - 0)- :: H,-,O) '" f-l/S6'( ,,0

1. 117 - 2 7.00 (0) ,4'7 -if
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(3.34)

defined for Jl/2< t < Ti, Jf <,t < 3.Ti/2, in turn. Clearly, ~2 (t) = ~ (t - 2Ji ), etc.

are also solutions.

with this, given a solution x(t) of (1.6), we can define its successive depar-

tures from ~ (t), XR(t), etc, for t >-Ji /2:

x(t) =~(t) +vL(t), -Ji/2< t< 0; .~(t) +vR(t), O<t<.Ji /2; (3.35)

= ~I(t) + vL1(t), Jf/2 < t< )/; = XRI(t) + vR1(t),Jf<t< 3Ti/2;etc.

The time 2J1 Poincare maplP associated to (1.6), with initial time t = -JT /2o

(mod2Jj ) is then:

1P0 (3.36)

A 2~ - odd periodicsolution of (1.6) gives rise not only to a fixed point of

~ , but also of:o

It is easy to verify that the symmetryx~-x, t-7't + JJ of (1.6) implies that

li'o = lPo lP~ 1P2• Now,with (3.30), (3.34),(3.35):

vLl(JI/2) = - ~l(Ji/2) + XR(JI/2) + vIi(Jt /2) = vRCJJ/2) + AI(S) (3.38)

and similarly for the de~vatives. Thus, the final formal expression for IP (E. ,,," ):

R2~~ R2 ,which will be made explicit in the next sections is:

1P (vL(- Ti /2), dvL/dt(- TI/2» -9 ( -vR(JT /2) - AI(€) ,-dvR/dt(i1 /2)

- A2 (e ») (3 • 39)

IV. On the invariant sets of IP (f- ;1 )

The function vL(t), eqn. (3.35), is a solution of:
•• • 2 2 3

€-vL+2rvL+3xr.vL+3~vL+vL -0 (4.1)

and vR obeys a similar equation with index "R". It is convenient to introduce .: ,-

the independent~-:väriables, for t < 0, t '> 0, in turn:
. -l"oeJ/! t

e • E -I / tJ: 5 JL(tl) fi dt I e - f--I /2 f L (t I) G dt I (4 .2)Lt -~ R ~(~~

for a 'Co such that ~L( r ), (R ('t) i: 0 for 11: I > Z"o' For ease of notation,

the index "Ln or"R" bn$ ..will be dropped if it is clear whether t<.O or t > o.
,'." ;' • .:c.· ~. , .""•

'..The aim of thisi S~ci::i.on·isito prove:
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Theorem 4.1: For 6 small enough, the invariant sets of the Poincare map

are contained in a disk:
!p(c ;/), eqn. (3.39),

2
D: IvI!

where AM is independent of

+ IdVL/deL\2 < AME3/16+kJl/2

E- and k( &) of (1.17).

(4.3)

A set 5 is invariant if 1P(5) •• 5. Because bifurcations are the main

concern, for which (as will turn out) k(S) •• 0(1), we use in the next sections

the notation t;kt rather than exp(-jf, t). The proof of Theorem 4.1 is achieved in

several steps. First, we notice:

Lemma4.1: . All solutions of (4.1) obey eventua11y (mod 2"J ):

\vL(-Ji/2)1 < KE,kJi/4 I~L(-Ji /2)1 (K€-1/2 €- kJi/4 (4.4)

This is simply Lemma2.2: let C" 3/4, A'~O (e.< C rl/4), tl ••Ji/6, t2 ••

Ti /2. It follows that a11 invariant sets of lP are contained in a disk of

. k!i/4radl.us E- •

Lemma4.2: Consider a rectangle:

(4.5)

There exist ToL' B, independent of e , so that a11 solutions of (4.1) starting

in D0( at t ••- Ji /2 obey>;at t •• -T E- 3poL

IvLI, \dvL/del< BgP (4.6)

where P" min [(k Jf + 2 0< ) /3 , 1/8] •

Proof: We use the new variable w:

v = w E k( t + Ji /2) f- 0.:

L - (_~)1/2

which obeys:

(4.7)

3
+ w(l + g) - w2 h + L h2 •• 03

h( e ) • .,

(4.8)

2 2

g( e) _ E. _1_{d~J _ ~ _f_ d ~ _ k E.ln2! (4.9)
4 -:x.i \ d t 6, ~ dt2 E:

3/8 k'iT + 20<....,I at t "'s , whereas h -' 1 at t-6 , if

(4.10)

k1i+ 2o(~3/8, butstays otherwise 0(1) downto t •• -7:1 ('..3/8, c1<-Co• Consider

the energyassociated to (4.8):

.i'i;" 2 2 3 4

E(g5<;rt(~) + ~ (I + g) - w3 h + 72 h2
';..•.. -,.,'

";"','.
>;,/":;
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for which:
2 3 4

dE w (2.&) w dh ~ h dhda OllT d0 -"3 d e + 6 da

If t is such that Igl < 1/24 (Le. t< _ce3/8), it is true that:

\ w(B )\ < ~12 E( e ) , Idw/ dei <~2 E( e )

for -Jl/2 < t< _ce.3/8, so that (4.11) implies:

(4.11 )

(4.12)

(4.13)
I dE I < 6 E(e)[ \2.& 1 + -t-ldhJiE + 12 E(e ) hldh lJdG dO (3de de

At t Oll- JI /2, E< E (A), and we can assume E » 1. From (4.13) we deduce that,o 0

as long as E (e) > I:

(4.15)E( f) ) <

~ < 6 E2 [I *" I + 4\ :~ I] (4. 14)

if t, ToL are chosen so that\h(e)\ < 1/12, fortf"[-Ji/2,-ToL(.3P]. Thedifferen:-

tial inequality (4.i4) can be integratedto yield, for t > - JJ/2

E( e )o

1 - 6 E( e 0)(t:.g+4Ah)

with 1>g, toh'" g(e) -:- g(Go)' h(e) - h(Go)and 00 = CJL(-Jf/2). We can now

choose To e.g. so that t:.g(TOL(.3P), Ah(ToLS3P)<: 1/(12 Eo)' Then (4.15) implies

E(-ToL€3p) <: 2 E(-Jill;)' Returning to (4.7) and using (-~) - Itl1/3, we obtain

the statement of the Lemma.

(4.17)

Notice, we do not yet compare .sP in (4.6) with E.o( in (4.5). Both situations

E P < E'" and f: P,> E~ are possible. We evaluate next vR' dvR/de R at t = ToR E- 3P.

Lemma 4.3: If I vLI, IdvL/d f) LI obey (4.6) at t = - ToL f. 3p, then:

IvRt J /dvR/de R 1 <: C &p (4.16)

at t •••ToR&3P, for C independent of g (but depending on ToR,B).

Proof:.ln~e.q. (4.1) for vL (t) we rescale variables to:

tOll E.1/2-p.- v OllePv
<:> , L

so that:

(4.19)

:J + 2r"P-1/2 :~ + 3 (xi ,,-2p) V + 3(~ ",-P) V2 + V3• 0 (4,18)

It is true that,for t €[ -ToL e-3p ,0] , I~ E..-p , < T~~3 , independently of e. • The

(4.18) is:

+ ~ (~t -p)2 V2 + (~(.-p) V3 + ~.
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At 5". -(ToL e;3p) E;P-l/2 ;;;C-a' one verifies E(6) < BI' independently of E,

if (4.6) holds. Further, for t~L-ToLE..3P,oJ

IV 1 < E 1/4/2 (4.20)

as one verifies from (4.19). We derive then from (4.18), (4.19) the differential

inequality:

3/4 I]I dE 1 < ~ 11 i... ()L E- -p) I + 11 i... (X- -p)2d6 8 d6 -1. 2 d6 -1. E..
(4.21)

Integration of (4.21) yields:

E( <5" =er'! < E( <5)l\ _I r 3 'T2/3 + TI/3 Ja 32 2 öL oL
(4.22)

with CI independent of e . With (4.19), (4.20) this means

(4.23)

(4.25)

(4.24)

for some C2, C3 >0. Using the discontinuity rules (3.32-33), we transfer the

information (4.23) on vL to similar inequalities on vR:

t vR(O)I<lvL(o)I+I(~ - ~)(t=o)1 < C2;SP + E1/8ör< C4 f;.P

I ::(0)\ <1::L(o)l+ 1:6(XR - ~)(o)1<·c3E.P + [1/4 - PJZ<c5E.P

where we have used the fact that p ~1/8.

We can now repeat the reasoning above for the analogue of (4.1) with index

"R" and conclude, similarly to (4.22), that:

E(6 = T e4p-I/2)/4 < C + D T2/3
oR 0 oR

(4.26)

(4.27)

with constants Co,D, ToR independent of g • Using (4.20), (4.19) and returning

to the variable e R' we obtain (4.16). This ends the proof.

Lenuna 4.4 : If vR' dvR/deR obey (4.16) at t = ToR&3P, then:

\vR(t= :J/2)\ , \dvR/d ~R(t. 3T/2)1 < M s(3p + kJl)/2

for a constant M independent of E.

in a d~k:~of size

Commentr4.1: If p • (k1f+ 20< )/3 < 1/8, then the bound in (4.27) is strictly

smaller than t~~ original size E~, eqn. (4.5),of the set of initial conditions

by.·~l' e kJl • ··Thus, at ."eryulfperi04 ••••~ i.Jaa•••• by k:M until we ruch
, ..,-·..,.:-·-:;....·_-;-""~'~~':,·;~":·f;t·~~,~i>'>':;,f;,'~

~:Ä,!~~~~lOQ P • 1/8 .• In th~.~l&tt.l'ca8e.< (4!~7)__ • lVa 1.\clvll/dfJ\< M t~/16."/2.
C~oosiug'·'o<. 3/16 + kSJ" 12 in (4.5) , we obtainagain p • 1/8. Thus Lemma 4.4

i'}""'< > . '.' . ..
iU;~~:;~~D.deed that a11 invariant 'setsoflP are ',:· •• _.'·,:.'.'·',··d.:'_··.,·./,.:·'.'[:,.·.,,·· ....';·:i··

;'::!?:, ;;::':i/" "-, "l-;:<C:,~"'-" '



-. -19-

AM E3/16 + k Ji/2 in the (vL' dvL/d 9L) plane, for some AM > o. This is preci ­

sely the statement of Theorem 4.].

Comment 4.2: The statement of Theorem 4.] (and of Lemma 4.4) is of interest

only if k = O(]). If k ->••••as t- - 0, it gives qualitatively the same bounds as

Lemma 2.2.

To prove Lemma 4.4, we write, similarly to (4.7), (eR=' e ):

We verify that,

E:kt E,3p/2 (4.28)

(4.29)

where the numbering of the constants C begins anew and CI(ToR)~T~~3 , but is
-

independent of E • The function w( e ) obeys:

d2w 3

de2 + w(] + g) + w2 hl + ~ h~ = 0

with:

(4.30)

f.kt + 3p/2

h (e ) = 3/2 (4.31)
XR

and g( e) of (4.9), now with index "R''. The proof of Lennna 4.4 is finished if we

verify that the energy associated to (4.30) is bounded by a constänt even at Q (Ji/Z),
~,

We cannot, however, make direct use to this end of the argument leading to

Lemma 4.2. The reason is, we cannot make sure we can find a ToR so that the

denominator in (4.]5) is bounded from below by a positive constant _at ea
3p

e (ToR & ). Indeed, H, e.g. p< 1/8, we can only state: E( Ga)(t 6 gl+ 4 \~ hl) <

(C + C T~/3) T-]/2 and we have no reason why this bound should be Iess than2 3 oR oR

]/6, for some ToR'

Now, if ~ is such that 0 < & < 3p, it is true that, at t] • E3p -~ , e] •

e (tl)' h](t1) - O( E. ~/2). It follows that the quantities 6h] • h](fJ]) -

h]( e(Jf/2», b.g. g( B]) - g( Q·(Ji/2», which appear in (4.]5) may be made as

small as one wishes, by Ietting ~ be small enough. We can thus state:

Lemma 4.5: Ässume:

ldw/d e (G ])\ < C4 (4.32)

with Q 1 • e of 8. Then, if E: is suffieientIy



\w ( e ( Ji /2) \, I dw /d e ( (I (Jf /2» \ <: C5

for a constant C5 independent of [;.

The proof i8 identical to that of Lemma 4.2.

The proof of Lemma 4.4 is fnus..:fidished·if we justify:
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(4.33)

Lemma 4.6: The solutions w(e ) of (4.30) map the rectangle (4.29) at e ""---- 0

3p 3p-~
G (ToR E, ) into the interior of a rectangle (4.32) at e1"" g( E. ), with C2

independent of E , if E- is sufficiently small.

The proof is displayed in AppendixC.

With Conunent 4.1, the proof of Theorem 4.1 i8 completed.

V. The left hand side Poincare~mapping lP L'

In this and the next sections, we derive controlled approximations to the

half period Poincare map lP , eqn. (3.39). We discuss first the quarter period

map 1PL

IPL
(5.1)

withQ -aL of (4.2) and ~ of <l.15). Clearly, in view of Theorem 4.1, for the

discussion of uniqueness or of bifurcations, it is enough to restrict the

domain of1PL to the disk D, eqn. (4.3). We parametrize then:

v (-"Si /2) _ E.3/16 + k Ji /2 -1'\: cos 'PL 0

dVL (_)j /2) •• _ &3/ I 6 + k Ji /2 A . '\j.1d e Sl.n I 0

(5.2)

(5.3)

The function vL (t) is a solution of (4.1), -31 /2<' t< O. Most of this Section is

devoted to the proof ofthe following:

Theorem 5.1: Consider the linear equation:
2-- -

d vL. dVL 2

E; -- + 2r. - + 3 Je v "" 0dt2 I dt ~"L L

with the initial conditions att ••-jj /2

~ (-Ji/2)" ..i\cos(t + e:p (t:jA»)E,3/16 + kJi/2L 0 so

dvL· _
dli (- "1/2) • •.•Asio( t .+ ep. (~~ 0 .so

(5.4)

(5.5)

(5.6)



..

-
..

_ r.. €311

rh (e) I: _ 7 f3 J A 2 €- I /8 t: k ( t+ Jj /2)"r so 24
-"!.l.

and ~o of (4.2). Letfurther vi be the solution of

(5.2-3) at t I: - n/2 and:

-21-

I dt (5.7)

~
(4.1) with initial conditions

u ••L , (5.8)

Then, at t ••0:

(5.9)

and:

-lJi.-J . k Ti /2
t. . (~ -~) (t •• 0).. 0(C. ) (5•10)

-kJi dUL d\\ _
E- (d~ -~)(t"O)_0(EkJI/2) (5.11)

Comment 5.1: This theorem states that we can compute IPL for vL' dvL/de (-Jl/2)

inside D, eqn.(4.3), simply by means of ehe linearized equation (5.4), with a

preci~ion increasing indefinitely as f- 7' 0.

Comment 5.2: It is not true that the solution of (5.4) approximates the relevant

one of (4.1) on all of (- X/2,O); this happens only on some inter~al near T= ,0.

The proof ofTh~orem 5.1 proceeds via a number of Lemmas, which we display
,~/'

belowo We use the variable w of (4.7),with ~ ••3/16 + k~/2 (cf. (4.9»:

According

w

vL I: (_~)1/2

toLemma 4.2, M <".0 exists so that:

Iw(9 )1, Idw/dfll< M, tf[-Ji/2, -T ~3/8J= I (7: oC)Oh - L' (5.13)

The fact that h(e) in eqn. (4.8) is a small quantity invites the use of averaging

22 23
methods (Refs.,' ) to estimate w( e ), dw/d6 on IL (-r ; E ):

Lemma 5.1: Let:

in

(5. 14)

(5.15)

(5.16)
o

+ f(h3 + gh2) d9'f. (5.17)

R'(e>.Ä +O[h( 9) +g(GJ
5.p 0

C'f( e ) -

w( e) •• R(e ) cos( 9 - e + ~ (9 »o
dw .
dG( e) •• - R( {) sin(9 - Q 0 + ce (e »

e0 - G L (- jj /2). The following estimates bold:
e

+ io(b4 +'gh2) d g'J

+ 01h(9) + g( 9 )

with

'where

',turn,
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"

o

q, sL (G ; t:) - - 274 }t;0 h2(e I; f )d fJ I
ab

The estimates under the 0(:) sign in (S.16-17) depend on M, eqn. (S.13).

(S.18)

Proof: In eqn. (4.8) we change to polar coordinates R( (I ) , ~ (e ) as in

(S.14-1S). Then:

dR - R
sin z [ g -hR eos z

h2R2

eos2z 1 (S.19)
eos z +--

dQ
3

dlf

2
z [g - h2R2 2 J (S.20)

.•• eos
hR eos z +--3-- eos zdg

with

z .•• ()- 9 + ceo (S.21)

Consider first eqn. (S.19). We perform on R(9) a sequeuee of transformations

of the averaging type to eliminate sueeessively the terms in h, h2, h3, g, hg,

wh1eh have zero average with respeet to z; for definiteness,~they read:

hR2 3 R3h2 1 1 3
Rt • R - T eos z; Rz • R1 + -y- ( T6 eos 2z - 48 eos 2z)

h3R4 3 1 1 2 19 41 6

R3 • R2 + '"'""i2'"Cosz ( '3 - 2" eos z + n eos z - 2" eos z)

.i!L . - 2 7. S 1 3
R4- R3 + 4 eos 2z, RS• R4 + ghR (30 eos z ~ T2 eos z ).

., (S.22)

Notiee, R.,i-l,2, ••• is defined in terms of R. 1 and the original variable R; at1 1-
\I>!

eaOb stage, one may imagine that we have solved R -R(R. l,z;h,g). We also use1-

dz/de - 1 + d~ /de and (S.20). The important oeeurrenee is that, at every step,

2 3
the eoeffieients of h,h ,h ,g,hg are, in turn, trigonometrie polynomials of z

with zero average. With this, the equation satisfied by RS is:

dR

cl IJS .••O( h4 + gh2 + I*,J )
(S.23)

An absolute bound on the right hand side of (S.23) is possib1e beeause R(e) is

(5.24)

R( e) are trigonometrie polynomials of z. Eqn. (5.23) me ans :
9 "

RS -Aso· o[ Sh4d9' + S gh2d9' + gU~) - g(Go)j
&0 6" l'

bounded on IL ( oe ; ~) by M, eqn. (S.13) and the eoefficients of the various powers

of

where:

(5.25)

is obtained by lettin~,~"'1~-"'(\'(:' ~ • A, G. e 0 in the sequenee (S.22). Clearly,

as .8 -9 O.•The se'qul!nc:e(S.22) ean be for e small enough,
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in principle, known functions of z. However, only estimates are available for

the other terms.

We transform next eqn. (5.20), using (5.19) to eliminate successively terms

in h, h2, g, hg:
. 2

~I • Y'+ hR sin z (I - S1~ z? ; Cf2='t'1 + h2R2( 2~ sin 2z + 9~ sin 4z +-

1 • 6- 'f .~ .i. . 2 Cf) (jJ h R· (3 5 . 2 1. 4 ••
288811i z; 3- '2- 4 S1n z;'4 -'3';- g S1n z "2 + 6' S1n z + 3' S1n z )

(5.26)

In contrast to (5.23), the averaged equation for r4 does contain terms in g and h2:

• .i. _ .L h2R2 + 0 ( h2g + h3 .•.I dgl d ~ I )2 24 -
(5.27)

(5.29)

Integrating (5.27), moving back to ~ by inverting the steps in (5.26) and using

(5.16) for R(e), we obtain (5.17). This ends the proof of Lemma 5.1.

Comment 5.3: We may replace Aso, 'f40 in (5.16), (5.17) by (A, 'f 0) at the

price of adding terms (known in principle) of O(h + g ) under the O( • ) sign;o 0

ho = h( fl 0) ,go'" g( G 0)·

Comment 5.4: It turns out that the terms of O(h3) under the O(~ ) sign in

(5.27) have zero average with respect to z. Also, if in (5.27) we replace
2

hR5 3. 2
i\' R = RS + 3 cos z'* O(h+ g) (5.28)

we obtain additional terms of O(h3) with zero average. We can perform thus a

further transformation lf5 = ~ 4 + O(h3) to remove them; the resulting equation

for \fS reads then:

d:g5 '"t - 2: h2 R; + O( h4 + h2g +I~I )

The similarity of the O( • ) terms with those of (5.23) is of use in Theorem 3.2

below.

We state next:

Lemma 5.2: The solution of the linear equation (5.4) with the boundary"
conditions (5.5-6)is

•..•
v •L

where:

given on IL (1:; e) by:

~(e) Ek(t+1i"/2) €.3/16+kJi/2 =
(_~)172

(5.30)

COS

..,.;

(} +'f)o



d; ( G) _ - R( e ) sin( G- f} + r )d7i 0

and(cf.eqn.(5.7»:
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(5.32)

-'
'f ••o

,..,

R( Q ) = A + O(g + g )
il 0

.... S g(G')= ~o + - 2 d

r + ep (~)o so

g' + O(g + g )o

(5.33)

(5.34)

(5.35)

The proof is done in the sameway as for Lemma5.1, with h = 0 (cf.Comment 5.3).

Eqns.(5.30-35) are a slight improvement over the WKBapproximation.

From Lemmas 5.1,5.2, we conclude that, if t t IL(r jf..): fI 9(_Tc.EJ/i)

l.w( (» - w(e)1 , l :~ - :; I ..O[h( {) + g( e ) + h"dt:3·o:~:F~(~'b.,.d h 2)4~tt,~!~le"l
eo 6 (5.~b)

Notice, the last term under the O( • ) sign may be divergent l\S € ~ 0, if

k is small enough, for finite values of tee). However,

Lemma5.3: At t '>lE3/8 -$ , ~ = 3kJ; /16

( ~ ( r) - 'ilL(r ) I .. O( E 3k Ti /2 + kJi /32)

::L([) _ :~L(z:)1 = 0(E3kJl/2" kJl/32)

(5.37)

(5.38)

-'
with uL' ~ of (5.8).

This follows by estimating directly the terms under the 0(' ) sign in (5.36)

using the formulae (5.12), (5.30) and the estimate ~(t)- BI/8 -S/3. With

& ~ 3 KTi /{G., the term in g( t» is dominant in (5.36). Clearly, there is arbi-

trariness in the choice of ~ •

Further, from (5.12), (5.30) and L:~as 5.1,5.2, we see that, at L- - TOR:

~ ' ~, :;, d';;: 0 ( c: !<Ti) (5.39)

with ~ of (1.15). We introduce thus:

•.••U c -kJl ( "')UL' L •• ~ ~,~
(5.40)

,...;

In the following, we estimate the .differences UL(r) - UL(Z: ), dUL/d~ -

dUtl d'l: onthe '(';.,..interval [- E.±~,OJ,bY adirectcomparison of (5.4) and(4.1)

on thi~ interval, using the bounds (5.37-38). The equation satisfied by ~ is:

d2U· dU

drtL+ 21 d; + 31tuL + 3{L ~kJfut + ~2kJi u~ • 0 (5.41)

with 1()fflj}5), tL,r~/ E, I ~ltlel~ealS'uL is a solution ofthe linear part of
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(5.41) (i.e. of (5.4». For the comparison, we rewrite (5.41) as an integral
-$

equation, using initial conditions at C=- f: and two linearly independent

solutions of (5.4), vl(tj E), v2(tje). These latter are chosen in the same

manner as the two solutions of eqn. (3.14), discussed ~n Sect. 111, with the

only change xaL~ Xl . We preserve the notation wl'wZ of (3.17)-(3.19). Lemma

3.4 is clearly valid. We denote:
.kt -k Jj /2

VI,Z<Zj~)= E wl,2(<::jE) - vI,Z(tjc.)E

\ 3/8 -~ . ~ ktFor I t <E.. , wJ.th of Lemma5.3, e ~ land, using (3.20):
. 3/8 - ~

W(V1,V2) = exp (- 21 z ) ~ 1 + 0( EI) , .\ 1'> ~

Further, from (3.18), (3.17), for \tl<e:3/8-~

IVI ,2 (1; j f. )1 < min [C Iz: ,- I /6, DJ ,ldV 1,/ d~ ( (:; f:) I < E' ~ ,I /6 + F

with constantsC, D, E, Findependent of E •

(5.42)

(5.43)

(5.44)

_i
\Hth this, the solution of (5.41) with initial conditions at L = - E is

the solution of: ~

UL(Z). A VI«) + Bv2(r) - _f.V1(t')

The solution UL(~) of (5.4), defined

VI,2( L ; ~) as: (cL Lemma5.2)
1/4 ~

u (z:) = 3 A [VI(L)cos(- 0 + ce )L - 0 0

in (5.40) may be expressed in terms of

- V2(Z )sin(- (~ + Cf )] =: }L VI(Z: )+13, V2( 'C)o o. (5.46)

Now, concerning (5.45), we may s~ate:

Lennna5.4: The solution of (5.45) is bounded on [- f -S ,0], independently

of f. •

- -.\ 1Proof: For LEL -t ,-To~' this follows directly from the estimates (5.16),

(5.17). For \ZI< ToR' we write the integral equation with initial conditions at

- ToR' Letting:
(5.47)

with ~ Bi chosen to match the initial c!onditions , we verify in a standard manner

that the integral equation has a solution r (z) in a ball of radius E k J1, ino

the space offunctions continuous on [- ToR'O] • The solution is unique because

of. the localLlpschitz continuity of the integrand with respect to r.

Fina~ly. we can compare directly (5.45) with,!(5.46). We have:
">:',1'< "';:' •••~'<'".~"
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Lemma 5.5:

~

IUL(0) - UL(0)\

dU

, I -l: (0)
d"L

(5.48)

(5.50)

(5.52)

(5.53)

Clearly, the proof of Lemma 5.5 concludes the proof of Theorem 5.1.

-s -s
Proof: Expressing A, B in (5.45) in terms of UL(- ( ), dUL/dZ (- ( ) and

similarly'A,'B in "(5.46), we obtain, using (5.44), (5.37-38), (5.40):

"" b -.J -~ -~ Ilr ~) -~ IIA - A:I </dV/dZ (- e- )I \(UL- UL)(-E. )1 +IV2(- €: ) ~dUL(~'t - dUt/dZ" (-t )

=O(~kJi/2) (5.49)

and, analogously, IB - B.l - O( E: kJi/2)~ Then, using IUL(z: ) I< MI (Lemma 5.4), for

tf- [-i-~, 0] and (5.49): 0

I UL (0) - UL (0) I< const E kJi/2 +f (G 1l:'11/6 + H) E- kJi Mi d Z:' • O( E- kJl/2)-&-~

with G,H constants independent of C • Differentiation of (5.45), (5.46) and

subtraction leads to the second estimate in (5.48). This ends the proof.

To summarize, according to Theorem 5.1 and using (5.46), the mapping ~L

is given by:

d~ 1/4 kJi-dV I ~ dV2 3kJf2

-( f ;0)= 3 '.A ( L-. -(O;f:)cos(-() +lf ) - -(O;c) sin(-() +f)] + O( E I )(5.5Ib)d'l' d!: 0 0 d'Z" 0 0

with Vo of (5.35). With Lemma 3.4, we can even write V.(O;O) instead of V.([;O)1 1

and, in view of (B.7), the estimates in (5.51) stay unchanged, for small enough k.

Comment 5.5: The quantity -+. (r), eqn. (5.7), behaves for small ( like:----- 't"so
k:if

..h (t:)._ ~

., so 11/3 (k ln ~ )2/3
With .aview:to the next sections, we introduce the quantity:

&kJi

po == fIT3

If k(f) ;? (8J1)-I, fo· 0(1) as ~~O, and Fo increases as the damping decreases.

It will turn out that bifurcations occu; if po ~ const as r -> O. For this reason,

it is convenient tot:ake~o as the second par~tel'in Jr( r:;t), ratherthan t.
For small C , one verifies, using (5.53) that:

(5.54)
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UL (fi. jr jAj'f ),o r 0 0 U' = u' (f1 • [. J\.. i' ). Concerning this dependence, weLo Lo I 0' , , 0
may state:

Theorem 5.2: If 0<: f 0 < f M' the functions ULo' Uio have any number of
derivatives with respect to A, 'f' , which are bounded as functions of [; , aso

r -:> O. If, in addition, f 0> f m :> 0, ULo" Uio are differentiable with respect

to f2 and the derivative is bounded as (- O.!"O
The proof is given in Appendix D.

(5.55)

are

Comment5.6: Wewrite in (5.51), with obvious notation:

IPL(11 ; t 0) - (k.TtIP~ + l.' 3kJj/21P~ == fkXPL (A j 'f'oj ~ jf )
""

of I? LFrom the proof of Theorem 5.2, it follows that the derivatives

approximated to O( ~q) by those of lP~ ' as f-) 0, q;> O.

Comment5.7: All derivative: of lPL with respect to .A, "Po' F 0 are
. ( kJ1)cont1nuous as r -) 0 and are 0 f: •

• •• I. --;;)11 l' j0VI. The r1ght hand s1de P01ncare mapp1ng R and the comp etemapp1ng Ir •

From the discontinuity formulae (3.32-33), we obtain:

u (0) = u (~= 0) - 6 ~R L t (6.1)

We discuss next themapping:

restricted to a disk of radius

-'?> (vR(3f /2) ,
. kJi

O( f.. ) around

dv /d"C(JI/2»
R

I
(-a7,-!J 7 ) (cL (5.51». To

(6.2)

this end, we write, for ~ ~ ToR

2 3 k2( 9 )
+ w( 1 + g) + w k( g) '\, w --- 3

(now
0. - () R' eqn.

d2w

de2

(4.2» ,

_ w E kt + 3/16

- xi!2
so that:

- 0

(6.3)

(6.4)

(6.5)

of (6.4) with initial conditions w,dw/d9 - 0(1)

where:
ekt + 3/16

k( 0 ) • 3/2
KR

The mapping"YR involves soltitions

at G(TOR'tß)=ea"~. By Lemmas 4.6 4.6, these solutions are bounded on [9a:~! G01,
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uniformly with respect· to E. •

Lemma6.1: The solution w( EI) of (6.4) is given on IC~a:" g J by:

w(e ) = R( e) cos ( e + <f(e » (6.6)

dW(EI) = -R(G) sin(Q +C{'(e» (6.7)
da

with: (Go = 0R( Ti 12» Go

R(e) = R + 0 [k(Q) + g(g) + 1(k4 + gk2) d €I'] (6.8)
o (ja e 6"

'f(8) = Ifo + Y'sR(El) -J g(~') dg' +O[k(e) + g(e) +J(k3+gk2)d(l'J (6.9)
~ ~

and:

Ro-R(eo)' <fo·f(Go)'olfo= 1('0- ~sR<eo)

<f (e) = - .lik2 R2(gloR lc ) de'sR 24 ' 0' (0
e~.

In (6.8),(6.9), theterms under the O(~) vanishat g=g •o

(6.10)

(6.11)

The proof is the same as that of Lennna5. I, wi th the change h -> -k and the

fact that, inthe analogues of (5.23), (5.29), we integrate from e to e .o

Comment6.1: The following estimate holds: (using (6.8»
e

'I' sR( e ) = - :4 ~.k2R~ d e' + O(T :~/3)" 'f~~) (e öRo) + O(T :~/3) (6.12:

g Connnent 6.2: ~e essential point in Lennna6.1 is the fact that the integral

S k2d ~' is unbounded as e-?, 0; indeed, for 0,> {)(t ), t > 0, independent of L
~'a •••• 0 0

\f .. (0) 'V _ 7G 2 1 [e-2q 70 2 22/3 r(/3) (6.13)
sR 24 Ro rtf3 '0 q2f3 dq = - 4~ Ro fl/3

.At;·~ F~~b~;:-v~(~ ): = O( e 3/16 + k.jf 12L: ~e;cal1ing Theorem 4.'1,( ,

(cf. eqn. (4.3», a convenient form of ~R is:

IP; : uR(O), duR/d'C(O) ---?- R(eo)' go +Cf(fJo) (6.14)

with R,tt' of (6.6-7). Indeed, apart from the small corrections AI(e.),A2(&),

eqns.(3.30),(3.31), the right hand side may be directly compared with the initial

values A, r (cf. (5.2),(5.3».o .

the

such

approximation by:

8» + nTf>; (ut1 ,-c17)(~(O) ,dUy..'d~(O»
(6.15)

Now, recalling (5.51), we are in fact interested on1y in the restrietion•

of r; to a disk of radius &.kJlaround (- A7;.,.6'7)' Let Roo(€-) ,f(00( e) be

values of R( 9 0)' ~ ( e 0) corresponding to the solution of eqn. (6.4) which is

thatvR( 9 (t», eqn. (6.3), obeys 'C (l: -0) • t:.l/8(-A7 ,- /)'7)' We

expect then tbattllemapping 1P; is

1P;(uIt(O) .d~/d 'l: (0»' -v



-29-

This expectation requires more precision, since both <r' (E) and elements of00

the 2)(2 matrix D'i?~(-1I7,-D.'7) diverge as E-:>O (as a cpnsequence of (6.13».
In the following, we discuss the approximation (6.15) in more detail.

To this end, we write 1r~== lPR20 T 0 /PR1 to designate the three successive

transformations:
1PlH

(uR(O) ,duR/d c:: (0» --:p.-
IPR)..
-:;:> (R( G ), ~ + ce (e »000 (6.16)

Clearly:

(6.17)

Now,

with

D1P~ = D/PR2oDToD1PRI

1P RI is given by the evolution of uR(O), duR/d'C (0) under:
2-

d uR t dUR 2 2 3-- + 2 + 3"'1 u + 34] u + u = 0 (6.18)d'l::2 d<: l R R lR R R

-1/8 lP '"iO)

'7.R = XRE. • The map I RI is unknown in detail; Dir RI is obtained from

the·values and the derivatives at TORof two solutions of the first variation

(6.19)

to (6.18): (with initial conditions (Su,d~u/d~ )(c=O) =( 1,0),(0,1»)

d2$ u + 21 d~u + 3(~ -+~u )2g u = 0dZ2 d"C (R - R

Since the solutions of (6. 18) are bounded on bounded 1; intervals , uniforrnly in E.-,

so are those of (6.19). Clearly, det DlPi ~ exp(-2i'ToR) - 1.
_'(1. ,- .(0) (0)

The transformation T has det DT = - 3 R (TOR)' where R~(TOR) refers to the

solution of (6.18) starting at (-ti7,-Ä'7 ) atl:: = O. Since /!17/+iLl'7' .;. 0,
(0)

R:(TOR) is nonvanishing and bounded, even as E ---")0. The matrix elements of DT are

also bounded as f -:> O.

'it> "'-1/3Final1y, we turn to It'R2' eqn. (6.16). Since 'fsR("JT/2)...... as e-:>O, it

is convenient to consider first:
rv

1P R2: (R( e ~:), ff (Ga_..» -> (R(9 0)' Cf( e 0» (6.20)

with er (e ) !! ce of (6.10). Let V (E.) be the value corresponding to theo 0 OG

solution o~ (6.18) starting at (-,A7 ,-11'7)' We denote further by R(o),a ), <e(o)(Q),

the (R, t() values corresponding to this solution and R~~) • ~~t..e~),~ (o?:= 'f(o) (ea-:) •

Let ~':a~
, .... " .. ,0

be, thevalues of (R, g ) at Q .. , of the neighboring solutions • Leta.·;'

further:

(6.21)
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tn = Y; (0) (e ). We can state the following:T 00 0

Lennna6.2: (i) The functions Roo( E.), <e oo( i.) are continuous at E = 0;

(ii) The derivatives "dR/'d Ra .( Q ), 'df.F foRa (e), etc., are continuous at e"" 0,

uniformlyon any interval [9a;, Go(fo)J, :[;0 > 0 ; (iii) The elements of

D'i>R2(R;), ~~ ) are continuou$ at c= 0; (iv) The derivatives ~PR/o~: ();~ (8),

-;3P~ /'J 'fk '0 RI (e), k + I = p '/ 2 are O( f(2-p) /3) uniformly in e ; if p "" 2,a a

they are O( In i );(v) The derivatives 'dR/G)f 0' 'dre /'dF 0 are continuous at f.' =0,

if a :> (2 '> 0, with n.. of (5.53).10 rm ro ,,. I

The proof is given in Appendix E.
<"J '"

•...• From Lemma6.2(ii), (iii) it follows that /PR =: IP R2 0 T olPRI is given by:

IPR(uR(O),dUR/d'l:: (0» == (Roo(t: ),~ oo(E» +Ekjf (DlPR><-A{ '-Ö'7 )(UL(O),dUL/d'C(O»

+ O( t 2kJl -6 ) (6.22)
'7.:>

for any 6 '/ O. We can now compute JI R(uR(O)., d~/dZ (0». For clarity, we write

in (6.11.) te R«();R .,,<f ,). Then:s a a

'f ( e 0) = l..f ( e 0) + "f sR ( g ; Ra' Cfa )

+(0 (G -R.<f )-te (O-R(o) l,,(o» (6.23)lsR 0' a" a sR o'a 'la.

The term with O( EkJi ) is obtained from (6.22); the last difference may be written:
fJ

(6 ) = _.LJ k2 R(o)(e') .[kfl('dR(e') U (0) +dR(e') U'(O) + O(E.-k;»)dG'/) ~sR 0 12 1\ \ dUR(O) L 'd '(0) L~, uR (6.24)
_ ,;0>

713 [.k.Ä ((e-2q ) [ ,':-1 .k:il+s't-l/3= -12 Roo([) rl/3 ~ ll3 dq JR1 UL(O) + JRZ UL(O)J + O(f: ~ )

for some s:> 0 (see below). In (6.24), UL(0), U{(0) are given in (5.40) and JRt ,JRZ""

are the matrix elements in the first row of the 2)( 2 matrix DI?R(-A7,-l.'7 ).
The justification of the last equality in (6.24) is as follows: using (6.17), it

is clear that:

IdR:(a~·'~;J4UR(Ö) - JRll <: const(l"JR/dRa ~(e ') - dR/'dR1f:(G 0)1 +

I ~R/a<fi.:,(Q')·-~RI'iJ~a:,*«90)1) (6.25)

where ~ R/? R~(Go) isa matrix elementof DWRZ(R,~) , 'f(:~). Using (E.2) and

(E.7) ,
0., 9'

- :: _(g 0) I< cons~l k4d9' J k2 dO" < ce-I/4
Sie, 6 9Ji:.

(6.26)
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A tighter bound is valid for the second term in (6.25). Finally:
8

J k2R( (J ') tkJlI 'dR (e) - ?R (e ) I d 0' < C .rkJf ln..!.. (6.27)
ec1 'dRoR qRoR' 0 ). r..

which justifies (6.24). From Appendix E, (eqno (E.10) ff.),if we set S - 0 in

R (~)' (6 22) th 1 d' "'11 ( kJi) ,00 c. 1n • , e ea f.ng correctl.on 1S St1 0 e. , 1f k, eqn.(J.l7)

obeys k< 1/7.Ji(this is true for the bifurcation region k •••1/8J1 ).

(6.23),(6.24):We can now summaTize by placing together (3.39), (5.51), (6.22),

Theorem 6.): The Poincare map 1P , eqn. (3.39) may be written:

A ~ R (E'" Ö) + O( & kJi )00

'f -.-;;> JI + (Ja + ~ ( E. "'0) + W (g' R ~)-o \00 r sR J 00'\00

7 3/4 2/3 ekJJ ( dV )
- 1);. 3 2 f(J/3).ARoo(0) '01/3 [ JR)(t"'0)V1(0) + JR2«(=0)-d~_1(0)dV

- (JR1 (€=O) V2(0) + JR2(€=0)-1. (0) sin(- g L +~ »)d't . 0 0

+ O( E kJT +s f -1/3)

(6.28)

cos( -9 +f')oL 0

(6.29)

Indices "R", "L" ha,ve been placed on e oR :: eR ( jf 12), e oL'

Comment6.3: Eqn. (6.29) makes itplain that changes in the behaviour of

occur if 11..~) as f->O (cf. (5.53».~.
There follows a statement on the derivatives of IP with respect to A, v:,,/Zo:i

Theorem 6.2: If o<fo<fM' the mapping1P has derivatives of anyorder
withrespect to .A, 't' , whlch are bounded as f-> O. It has a derivati~ witho

respect to r ' which is also bounded as E-., O,if, in addition, O<f m< f o'
Proof: Clearly:

DIP R •••D1P R + ( J ~€) J -( ~ ) ) (6.30)
51 s2

with Js1 •••(oCfSR/';)u~O»)(9j)'" ocf-1/3), Js2'" ('dtpsRldu'~(C!»)(eQ). 0(r-1/3).

Now:

and the elements of

Dr. DirRODl\ (6.31)

'1i) k:i"
D" L are O( (, ) (Theorem 5.2). This shows the boundedness

i8 analogous.

of the first derivatives. For the second derivatives, x,y € R2:

D21P(x,y) • D21j> a(DIPLx, D1PLy) + D1PR D2PL(x,y) - 00-1/3 E2kJl) .;- J{

: ort-l13 rk:i) - 0(1)

andThe()rem5~2. Theprooffor

~.. J /

(6.32)
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Concerning the evaluation of the derivatives of IP with respect to A,

lV we have the following:T 0'

Lennna6.3: Let 1Po(A, \f'o; fo) be the explicit part of (6~28), (6.29). The
derivatives of 1P with respect to A, t are given to O( E.s), s'/ 0, by those of

lPo(},,;·'Po;f.) as E ~O, if O<fo<fM. If also ~o'>fm/ O,'d1P/'dfo is given to

O( f. s) by 'dlP°j';) f~.
Proof: We write:

IP R(~ (O),ui. (0» == CR(( ; i) + lPRl (uL(0) ,u~ (0» + 1 R(~(O),uL (0» (6.33)

where CR is a constant(vector),lP Rl is linear in ~(O)'uL(O) and D~R(O,O) == o.- - . ~
From Lennna6.2, QDIt\(uL(O),u~(O)}f <const, so that D'PR·D'i>L == O(l: ~). Further,

Theorem 5.2-:and Comment 5.6 imply that the derivatives of rr with respect

to A,'Y 0 ar~ given to O( € q), q")O, by th~ derivatives of 1P Ri( E kjjlP~). Now,

foro<fo<fM' 1PRl(~'u~) is given up to terms of O(c:r), r>O, by (6.2.l ....2.lc).We

call 1P~l this "essential" part of 1P Rl. Thus, the derivatives of lP are approxi-

s 'Ji) 0 kj) 0mated to O( & ),s '/ 0, by those of Ir Rl 0 (E. 1PL). But:

o J- lPo kj/ 0lP . == Co ( [, ; I ) + I· Rlo (f 1PL )

which proves our statement (C is a constant).for the derivatives with respecto

to .A, ~ •o

FinaUy,iiPR/dßo can be written similarly to (6.33) and, if ro)f m'I I .
estimates of the liigher derivatives with respect to (~(O)'uL(O» are the

the

same

as those of 1P Ri. • The reasoning is otherwise unchanged.

A
Connnent 6.4: We also notice:

de t Dir (A, \f' 0) ==

PA CA , \f )

[; 2kJl (6.35)

which is the Wronski identity for the variational equation. ~ is given by (6.28).

VII. The limit of \P as ~ -> 0 •
..

Wemake next the meaning of (6.28-29) more transparent. First, we notice

that fixed or periodic points of IP can appear only inside an annulus.A of

radius R andtbickness Ai: ki' ,forsome A,> Q. We perform the following (E -de­00

pendent)~cl1t§.g~»rifot~;gin. of \f'o (recall (5.7), (5.35»:
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"Po = % + aoL -epSOU: ;Roo) •• Tfo (7.1)

where we have set 1\.= R in (5.7). Then, with an obvious notation, the 't'-component00
-1 ~

of T o1Po T ==.,p reads:

(7.4)

(7.2)JI + e - e + Y' R( e ; R ; 'f ) + 'f. (E;; R )-oR oL s 0 00 00 50 00

EkTt ~ - I
ARA -1/3 cos( 0/+ B +rk (&"A) _rh (E.'R )'+ O(t:kJj+s~-I 3)

00 ~ Jrso' 150' 00 J ,with: '

Ac.2.33/422/3 ( . dV12 dV2]2) 1/2~4 r (1/3) IJRI VI+ JR2-] + [JRIV2 + JR2- ,A 70 (7.3)d~ ·dt

JRIV2 + JR2dV2/d~
tan B = --------

JRIVI + JR2dVl/d~

and B Ei-n/2, 1i/2J (or (-rr12,31i12» if JRIVI + JR2V2 is positive (negative).

Now, in (7.2):

(7.5)

where

roh.

{j ( 1/3eoR(E; ) - e oL( f;) ••C j Isin t I . dt + e ( f. )
~E; _~~ 00

e ( c ) :;: e ('C; (..) has a finite limit as E.-.." O. (The latter is verified00 00 0

using the approximants (3.8),(3.28) to ~, ~).

We rewrite (7.2) as:

C(c;I;A;'f') ..•.ß(t;f) .AR cos(.y+ B +f (L ;1\) -cf" ..(E-;R » (7.6)I 00 50 SO 00
with:

C = Co(i; f) + O(E kJT+S)-1/3) (7.7)

F = ß A R2 (7.8)I I 0 00

where Co has a c1ear meaning and f 0 appears in (5.53). We change further variables
to:

\fI '" 'X + C (E ;l ) =: S ko

so that (S-I61)J <> S);;; Ji re ads:

A rJ

t-:> f R cos(X +Zu:;ß;A» +0(EkJi+st-I/3)00 I
with:

...,

..z: • Co ( F. ;1") + B t jJ + ~ 8&(i: ; A) - i'sb ( E ; R00) •

Letnow:

-
and JI be the mapping ofthe unit circle into itself given by:

Jf: t cos(~+.x ) (mod 2JJ)

10) (and (6.28» has no

(7.9)

(7.10)

(7.11)

(7.12)

a .13)
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limit because of the indefinite increase of .z(~;A), like C-I/2,in (7.10).

(mod 2Ji), for a given va1ue 0( , the mapping

J{ of (7.13), with 2 =0( • Thus, the limit

tend to zero so thatHowever, if we let E. n f~= cons t and Z ( .['n; f ) = 0(

JT (€ n' f) obvious1y approaches

of lP ( ~ ; fo) as E -"> 0 with f 0 =

const is the family Jf (f ;1:) of onedimensiona1 mappings, with 0 ~ Z < 2JI ( and

lt = R )00

Comment 7.1 : We can also let fo~ 0 as [-} 0; then 1: = o,A= Roo is the

(trivial) limit of I? .

In the fo110wing, we study the bifurcation structure of ~ , eqn. (7.13);

in the next Section., we discuss the extent to which the bifurcations of IP ( €: ; f )
maybe inferred from those ofJII for sma11 t . We note that the map (7.13) has

been recent1y studied (also numerica11y) in Ref.24• Eqn. (7.13) is different from

used to model a nonlinear osci11ator with
the map x I = x + ~ + B sin 2;' xn+· n n

. 25 26
a limit cyc1e (Refs. ' ): the term linear in x is missing. We shall be con­n

cerned here on1y with the first few bifurcations of JI , which we describe by

e1ementary methods.

(i) Lemma 7.1: If ~c < 1, JI has a unique fixed point and is a contraction

for all.1 •

This is obvious.

(ii) At every fixed.2: if we increase f we reach a value f s (.x) beyond-
which Ji admits of three (or more) fixed points, Le. undergoes a saddle - node

bifurcation. At f = f s (.2: ),

i.e. the equations:

the derivative of JT at the fixed point X is unity,s

- node bifurcation curves near(iii) We discuss the

hold. It follows that f=

if 2:. .;.jj /2 (mod 2:r).

• (l cos (1 +.z )1 s s

= - a sin( X: +.2)IS s
• I + X 2 ? 1; we haveS

•

Otherwise fs > 1.
shape of the sadd1e

(mod 2.J/ )

a • 1 only if X • 0, i.e.ISS

(7.14)

(7.15)

only

..z;. - Ji /2. Let 6 -.L.: +Ji/2. From (7.14-15), we deduce:

tan <X +(5) - l:s· ....•.. s (7.16)

Le. forsma!!
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(7.17)

(7.19)

(7.21)

(7.20)

It follows that:

(36 )2/3
fs(6) ~ 1 + 2 (7.18)

Le. ß s (.1.) has a cusp at ..z = - Ti /2 (mod 2JJ ).

(iv) 1f, at the fixed point XF, it is true that (dJ/ /dX )(X-F> • -1, the

map JI has a flip bifurcation, if certain transversality conditions are obeyed

(see, e.g. Ref. 8 ,§3.5); the latter are simply X ~ + 2 :f o(x_~ + 2/3 :f 0 in our

case. The analogues of (7.14-15) are:

Y F = f F cos(}cF +Z )
= f F s in (XF + Z )

Again, it follows that fF(1:) > 1, unless X F = 0, i .e • .z = Ji /2 (mod 2JI ).

(v) Let now 6 =.z - JT /2. From (7.19-20) it follows that:

tan( X. F + 6 ) = - lF

i.e.

}' (6) = - <5/2 + 0(<53)F

and

fl (6) ~ 1 + (52rF 8

Thus, ß FC:?:) has a quadratic miriimumat ;Z = Jl /2.

(vi) Clearly, the flip bifurcation curves ~F(~) are broader than the

saddle node curves fJ.. (,Z). We can be more precise about this. At the point
.A rs

(.xo' po) of intersection of PF(J..:) with ps(-X), eqns. (7.14-15),(7.19-20)
1\ '" '\10 \,0 1\ -

hold for the four unknowns ß ,..L...., , A..F,.x.. • We can assume a < JI (as will beI 0 0 S (0

apparent). From (7.14-15),(7.19-20), it follows that: 1 + ()(~)2 • 1 + (J(~)2
!'

at (l;o' po)' Le.

(7.22)

(7.23)

t 0 = + X 0 (mod 2'" ) (7.24)F - s

and, sin,ce. %0<1 ,lx~I,\x~ 1<J1. Clearly, also:

cot( ~ + 20) • \~ (7.25)

cot( XO +.2 ) • - XO (7.26)sos

The possibility t:· x.~is ruled out by (7.15), (7.20). Thus:X: • - X~ and

therefore: -
(mod J1 ) (7.27)
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Then, at the intersection points of fF(.l:) ~ith psC[,):

X~ = + 'Si/2 , X~ =.+ Jf/2 , fo = (1 + Ji2/4 )1/2 (7.28)

The possibility '\~ = - Ji /2 leads to tau 20 = -JI/2 and eqns •. (7.15),(7.20)

require 2 = - atan Jj /2, with -Jf /2 <.2 <: JI/2. If 't0 -= 31/2, (7.15),(7.20)o 0 s

require:;6 = Jf + atan Jf /2, Jf < X < 3.n /2. It' follows that the ratio P ofo 0

•d h ( d h' .••• f r 1/3) f a r " )the W1 t s measure at t e 1ntersect10n p01nts, 1n un1ts 0 0 r s~

r =

JI - 2 atan Jf/2

JI + 2 atan 71/2
(7.29)

(vii) We find next at every ~

in which the invariant sets of JI
an interval of values of f ' 0 -< f -< fe (.2: ) ,

can be completely deacribed. The argument

avoids the theory ofonedimensional mappings of Ref.9, but uses the notion of

Schwarz derivative:

S(f) =--
f' _1(f.:.)22 f'

(7.30)

8 9
in the manner of the proof of Theorem 6.3.1, Ref. or Theorem II~4.1, Ref ••

Lemma7.2: Let ~2u(Z)be the second positive root of the equation:

]I ( f ;\: = ~) = f cos ( F +.2 ) = -.z (7 .31 )

if..z <0. and the first positive root of (7.31) if 2; /0 (-Jf<2::<J1). Let (~2da)
be the second positive root of:

]I ( ~ ; X = - f) = f cos ( (~- .z) = - Jl -.L,
if Z < 0 and the first positive root of

if 1; ) O. Let :

(7.32)

(7.33)

~e(.z) - min[Jf, f2u(Z), F2d(2)] • (7.34)

Then, if 0 -< P <pe (Z), the invariant sets of Jf consist of at most three fixed
points and two pairs, each of period two.

The proof is displayed in Appendut F.

Comment7.2: Eqns. (7.31), (7.32) also admit of a first positive root,

, if .4 < 0. in (7.31) and p Id-jf +~ in (7.32). At these values of
of ~. superstabie9 fixed point, att - -.2: (Le. lying on the posi-

, in turn.
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'__,-,~ Connnent7.3: The other roots in ß) 0 of (7.31-~ correspond to superstable
period two orbits, through the maximumor minimumof JI (X).

(viii) The set JI (X; f ;Z= -Jf/2)}ro)jj] makes up, for Jf/2 < ~<Ji a full
family of unimodal maps, in the sense of Ref.9• For such a family, there exists

an increasing sequence of values of f: f 1<.f 2< •••• at which JI/ roJü]admitsof

superstable orbits of period 2P• This sequence accumulates to fc< Jl • For

Ji ) f ')f c' the motion has no stable periodic orbits (is chaotic) for a large

set of values of f (see Ref. 9).
Clearly, the same situation is expected to hold at neighboring values of~.

This closes the discussion of the limiting mapping ~ , eqn. (7.13).

VIII. The bifurcations-of periodic solutions at large j" (E -";> 0).

~

Clearly, the bifurcation structure of JI is periodic as a function of.L: ,
""'-'

at fixed (l • Wemay take tJ, r' as parameters of JI . From (7.12), (7.7), (7.5) ,
I

we obtain:

The preceding Section teIls that, if

2. - ~ ~Isin t 11/3 dt
,..1/3 1/8 \ €. '- "/2- A
1. '" c and f = r = const

(8.1)

(8.2)

+ ..A- ~ B _" Br I /3
1'1/3 n

means h =6 (r) of (1012) with:c

1 - 2 1 ;A.
+ - In (A R ) -::;=- In ß

Jf 00 Jl I,
r is large, Jf ( r ;Li) possesses an al ter;-

I
In 12jj

1
C =--....

o 3)1

since

nating sequence of saddle - node and odd periodic - simply periodic bifurcation

curves, so that their maxima He on the Hne f ..I, with a spacing equal to TI

in the variable;L. , Le. given by (1.3) in r 1/3 •.!..f f< mine fF(.J,;), fs(L,»

(in particular, if ~ < 1 or if f - 0 as r -> ••••), J I ( r; b) has a unique fixed'"'-J

point. Weexpect that, for r large, the mapping Jf , eqns. (7.10), (6.28) - which•
is equivalent to lP, eqn.

write in the following 1P

(3.39) - admitsof·the same bifurcation structUre. We
•.....•

for all its equivalent forms, including JT •

(6.28), we rewrite 1P in the form:

(8.3)

(8.4)
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We keep ß" L as fixed parameters in (8.3), (8.4) and study the transferl

of the invariant sets from J} (~;.1.) to lP ( f;.L:; e ) ,eqris.• (8.:3-,4) 'for small € •

Keeping .z fixed means we let a sequenee € te~d to zero, with .2 (f: ,T( (4, E- »n . n I n
fixed (mod 2J1).

Comment8.1: Using Lemma6.3 and eomputing explieitly the derivatives of

lPo ( F ;.h; e n) we eonclude that (:dPx.I()t)~ approaches ('dJf/"d{).x as €n~O,

whereas ('?Px l'OA).x "" J1(K;1.\ )/Roo - eonst •.(dJl/dt )('k;2 )/(ln 1/6 )2/3 for

small€ , 0 < f< fM' Also, 'OPA I;/'{ ",:,dPA tcA '" O( E. kTi), by Lemma6.3.
. In the above and in the followingwe write lP =(PA ,P:t ) for the two eompo-

nents of IP . (ef.(6.35».

There now follow a number of simple statements ,relating the behaviour of JI
withthat of 1> .

(8.5)

so that PA-A is,

If 0< f < ßM' then, for f; small enough,. !

(or aperiodie point of per iod p, in

Ix -x.l'"'O(E-s+r.kJi)o 0

fixed ) ,'0 PA.I 'CA = O( f:, s)

8.1: Let l' 0 be a fixed point (or periodie with period p) of JI (f;1:; ~ )

'dJ!'oX )&1 (or ()JfP taX rF 1).

Proof: We use Lemma·6.3. At eaeh

Lemma

for which

'IP ( a ;z; f,) also has a fixed point R , ~l 0 0

turn) inC'><A<AM (cf. eqn. (4.3»:

\ R - R (~= 0) I"" O( f; kii)o 00

for eaeh ~ and small E:, monotonie in.A , in 0< A<A}I' The unique root A =/\ (~ ;E )

of PA -Ä • 0 in this interval is such that IA(t; ~)'- R 1= O( [kJi) and00

( (JA I()X)E. = O( f;. s), sinee '4 IA I'dX = O( E- s). Substituting this into (8.4),

we obtain using also:

Cf) «(;. A ( ~ . C » _ ~ (f- •R) ( ~2kn .t. )'so" so' 00 =0 tll? (ln~ )2/3
(8.6)

that:

q>O (8.7)

Thus, for t near }'0 and f, small enough, P"t:,- X. is monotonical in X. and. -
changes si8O' From (8.4), its unique root there, i , obeys (8.5). This ends theo

proof.

Lemma8.2: Assume that the fixed and periodic points of period p <'Po of

&.uchthat(JiP~ i' 1. Then, if &i& amala; enough, they are in

correspondencewith the fixed and periodicpoints (with period



less than po) of ? (f ;]:; ; s::- ).

Proof: From Lemma8.1, if

Proof:

-39-

L < [; , there exists.Cl unique root of I - Y (oro

kjj kjj]I - 1PP) lying in the closed set ['te - S , 1. +~] )( [R - C [, ,R + CE-,1 1 00 o· 00 0

where 1::. are the fixed points of JI (or Jj p). Now, I - IP tends to I - JI (with1

an obvious notation) uniformly as ~:-> 0 on lo,2f1JxIO<A<"-M1. TllUf!, there exists

a compact set AC [0,2JJ]X[I.AI<t\J, containing thecomplement of the above sets, where

I - Ir cannot vanish for small e • This ends the proof.

From Lemmas 8.1, an, we deduce that, if J[ has a unique fiiKed point 101

the mapping/p<r;.L;e) also has, for small E., .ä·unique fixed point (Aor..,t:ot:).

To exclude that, for large p,'"iPP( f ;.,Z; C ) might have other invariant sets

(p""'''' as t -> 0), we state: --
Lemma8.3: Let J') 0; if JI has a fixeä point to' such that, ·for a11 I'XI<!.

1 JT On - 1 I<" (I - ~ ) I t- 1I, there exists. E' (~), independent of .L:, so that,o 0 0 -

if E: <E' (~), /p( a ;.l:; ~ ) has no other invariant sets in D: 1L\.1</\{ apart fromno In - i

the fixed, attraeting point (A , X. ) corresponding tal. by Lemma8.2.OE o~· . 0

From Connnent 8.1, it is clear that, if C <f; (~), appropriately small:n !
1 P.,. (A;t ) -A I< C [:kJl(IA - A I + I X. - ):oc/) (8.8)A~. oe oe

IP\:~(.A;t) -:toel < AIA-Aer./ + (I - 3.s/4)1X'-:Xo~1 (8.9)

for a11 A,~ E D. We show first that, under successive iterations of IP. D is

mapped into a rectangle RI of size IA-A I< 4~C (.kJi:= MI~ kjj •.It- 'X: {<(l6J1AC/J) joo~ OE

krt - k jj i.) 2 . I I kjj
E: = KI E • Indeed, under Ir , D is mapped into a r1ng A - AO(' < 4:ifCf,

1•f kJi -, [ (A ~ )] •. •. d r· f kJl<f.. <: I1 C M + 2)1 , Wh1Ch1S further mapped 1nto 1tself un er 11, 1 E:.

1/(4C). Now, if It-Xo~I'>KI E-ki/2,{p\:t(A;X.) -to~I<(J -f./4)1X'-Xoel. Le.

\'k-X.Oi:1is contracted. If 1l:-~oc'<KI ~k1lft then JP.kt:(.A;~) -ioc'<Klf:k~, if

SI < 1/2. It is now easy to verify ~ for p ~ 1 that the rectangle Rp of

sizeJA- }.. , < K tPi)J", {1 -~ •.J<IC cpk'i' is ..,ped into R +1 if q • 2C(t+A+4A/S),. 01: po. P . .• . P
p-J -+ •. kjj

M • qT1C, K • qP Tt 4ACI.I, TI· 2Kt + 2Ht(J+A), E: <I. The rectanglespp. .... .

converge to zero if q &kjj is sufficiently smali: This ends the proof.

Comment8.2: We may obviously require in Lemma8.3 l:r2(x) -kol<(t-& >I{-Xo'

The conclusionsis the same since 1P2 may also be
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Letmlla8.4: Let ß<. fe(.Z), jeqn. (7.34). Assume that, at the fixed points

of Jr or JI 2, J J'~ - 1'1 ,,>' $ ,1\.2,2\. - 11 '> ~ , for some J > O. There exists then t: (~)
> 0

so that, if fn<: f'o(6 ), /p( ~;.L.; f:n) has no other invariant sets apart from

those corresponding to Jf by Letmlla8.2.

Proof: By Letmlla8.2, if .E < E'I( J ), IP has the same number of periodic points

of per iod p ~ 2 as JJ , and they approach those of the latter as l: ~ O. For

simplicity, we assume that JI has three fixed points X. , X. , X • Using the- 0 +

argument of Letmlla7.2, there exists ~ I (.$ ), so that, if 1:. ~['Xo + ~ l' fJ == 1+, the

quantity k+ = min Ijf2(X-) - 'X +11/ t -'".k: +1 obeys k+< 1 - JI' and similarly for 1_,

k_, with obvious notations. As in Letmlla8.3, we verify that all points in 1+ x

[IA-A+1:I<c~f:.kJi)are attracted under I?(E:) to (AH.,X+r) and similarly for

I_,A_t,t_r,'(Co'> C(AM + 2J1 ». Thus, we only have to show that the set

~IA- L\o~ I<C0 c..kJijx irr -{p€:!<J1) ::=. U~ does not contain other invariant sets of 7P ,

except for (ÄOf' X ot)' If r. is small, we can assume IdP'{ lot/> I + ~2 > 1 ,

\ 'dPx. I?Al< A in U •

Consider then the angle W:IA-A' 1«~2/2A)IX- x: "in the (...1, t' ) plane. OneOE. . Of

verifies that, if (A,t) f W, then IPv(A;t) -XI>(l +J2/2)1l-'~ I. Moreover,~ ~ o~
."',

points of Wn U~ are mapped in'W, if f is small. Thus, if a point reaches Wunder

iterates of Ir ,IX - \:o~1 increases unti! it reaches the boundary of Uc!;: ,sothat then

are no invariant· se ts in Wn UE; •

Now, we show that, under iteration of IP, every point in U( ei ther reaches

Wafter a finite number of steps or the sequence thus generated converges to

a rectangle with
r"jj

Clearly, Mr e

<A ,~~). Indeed, all points of U~ that are not in W lie inside the rectangleo€: o~ c.

Ul(.~/A-Ao"<'Co(kJjl)(~t-Xotl«3AC/ ~ 2)c..kJi le.ue• As in Letmna8.3, under p iterations

of I? those points of Uc that do not reach Ware contained in

• pkJi pk:ii p-I
s1des Mp~ , 3AMpi: ' U2' with Mp • q Co' q • C(l + 3A/J2)·

._jr 0 &8 P-:*~, if t. is •• 11. This end" the proof..

w. turn ,DOWto these .alttu F,~ where, jj (4 ;Z;~) haB fixed' points. -I I

for whieh , JI't I is elosedto unity.

LC!l1DD&8.5:I;~;~i~~>I2:+~/2 r> s > O'F '>fm>O. For everye ~ 0, there exists

~o(~~~).so that,if~D"'~O' the.set of th~~~equations: Y( fs,l:,A,X ;1'n)'·
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(A,X. ), det (I - DIV )( fs,1: ,A,X ;En) = 0 admits of ~ unique solution ~s(.l1; ~),
rx (,1;; & ),1\ (1;; & ), differentiable as a function of 2: and departing froms s

ß (1:), ~ (.Z), R by less than e. .ISS 00 .

Proof: Firs~, if 1.2+.TI /2/") &;>O,I'd2Ji /'QX?(fs':!' ,Xs)',''dJJ/of (fs,2,'ts)/
> ~1 > 0 (from (7.14-15». With this, the statement follows by simplysolving the

set of equations mentioned above in terms of A , f'X in turn, in the manner of

Lemma8.t. Intervals of monotonicity in A, f'X in turn exist,for 11-1s(2)/

sufficiently small and A,P elose to Roo' Fs(Z) since, by Lemma6.3, we verify -
,\, 2 '\ 2 2that dPx/'ih .. ,a Px /7J~ ,qP~ti)f ' ? Px /'<Jf0'X approach as t -;> 0 the correspon-

ding derivatives of Jl ; thus, for ~ small, the relevant quantities are certainly

nonvanishing.

As in Lemmas8.4, 8.5, we show that 1P has no other invariant sets in a

neighbourhood of A ez; ~), X (.L;; l:: ) •s s

Lemma8.6: At every 21 ,~jj-& >/:1;+ Ji /2 I;..s > 0 and [, small, there exists

a neighbourhood V = U )( U] of (~ (~; [; ), A (.Z; ~ ), X: <'L:; E: »: U JiJ ß. -/1 I< A},o ! S . S S 0 r ,-s

U1:~IA- Asl < Cor:kiJ)(l/:t- ~/~ a}, with A, B, Co independent of ~ and having the

property that: if f< fs-' ~. contains no invariant sets of lr ( f ;.1: ; r );. if f > fs

the limit set consists of precisely two points; if fl = /L. , of (A. , X ) alone.I I _ s s
Proof: This is done most easily using the center manifold theorem (Ref.27,

p.28) for the map Ir( a ;.2:-;A;X.; C ) at fixed.l, at (f ~ A , X ). Let A',~'r n s s s
be new coordinates, related linearly to A - A , X -x. so that the linear part ofs s

1P( ps) is diagonal. There exists then a neighbourhood V of (r s' A s' t s) and a

function A' = u( f ',X ') whose graph is contained in V, such that: (i) the set

M• [ ~', A' = u( f' ,x.'), 't 'J is invariant under l' and (ii) all points in V approach

Munder (r> (see Ref. 27). Cf':: f - fs)

The magnitude of V is independent of t , since the eigenvalues of D'P that··
• 2kJi

are different from unity s"tay away from the uJlitcircle (they are O( f.- » (see

27 'i::I )Ref. '). Now, according to the center manifold theorem, all invariant sets of I, V

are contained

givenby:
f- const of the setM. The action of JP on M is

(8.10)
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where a,b ;. ° for small E (beeause ~2Ji /'dX2 ;. 0, 'dJI /'d f ;. ° and u( f ' ,k ') - O(l kH)

as one may verify), and X(O,O) = DX(O,O)•• 0, X" o( Ir -fs'+ t'2). The onedimensional
map (8.10) is the standard form of a saddle - node bifureation and, if the neigh-

bourhood V is suitably restrieted, the statements of the Theoremmay be direetly
28 29verified (see also Refs. ' ) •

For the flip bifureations we have in striet analogy:

Lemma8.7: For any e/O, there exists S (e), so that, at everyZ, fore<€' (e),----- 0 _ 0

the "set of equations iP(f F,l: ,AF, X-F, En) •• (AF'{F)' det( I + DIP )( fF':X' AF,

.zF' E) •• ° admits of a unique solution f F(.Z ; sn),AF(,L; ; & n)' tF(Z ; f.n), dif- .

ferentiable with respeet to 2: atld dep-arting 11rom~ fF(.1:), Roo' XF(..L;) by less
th.an e '. (cf. eqns. (7.19-20». At every fixed e < € (e), there exists a neighbour-n 0

hood V of fF(.z; sn) ,AF(l: ; E-t), 'k FCZ ; E::• .) so that: (i) if ~ ~ fF(.l;; E,), the limit

set of IP in V eonsists of one fixed point; (ii) ü f >fF(Z; i:n), the limit set
eonsists of one fixed point and ~ne stable orbit o~ period two.

The proof is the same as for Lemmas8.6-7.For a related detailed diseussion,

R f 28,29Eiee e s. •

The analysis of the deformation of the eusp in fs (1'.) at .z .. - Ti/2 appears to
be more diffieult. Wecan only state the (rather obvious):

Lemma8.8: If [,..I: + Ti /2, f - 1, Aare sufficiently small, fj) ( (J, ,..L. , A , t. , c )

has either three or one fixed ~oint in [1/1.- Rool< Co,k' J "/Od< 1).
Proof: At eaeh f,Z,( we ean solve PA -A, for every X • The solution is

.A •• R + f: k"i u( fL-1,Z + TI /2, l- ;X ). The funetion u has derivatives with respeet00 I
to't and f ' bounded as f":;' 0 (Lemma6.3). Substituting in P~-k::o, we obtain an
equation:

and at least one root
~.. ' ,

it,f61ioW:s):hat there are at

G(X;f; l' ;X) •• Pk.( f'X,}..( f'l:., (:,X ),X:,e ) - X •• 0 (8.11)
Now,Gtends with all its relevant derivatives as c~ 0 to the eorresponding values

1, " • kJi • ~
of JJ 1;.1;;A.) ~~ since the derivatives o.f Aare O( ~ ). But, near l:.- JI/2:

JJ ( ß i1: iX ) ·-x -(!J, + TI /2) - t X 3 + '1(a - I) + 0(11: + :!.I +/t(ß-l)1 +l~f)I r ~ r (8.12)

In particular, fOrSmallE.' ,,3G/";)'t3,. 0, for IXJ<A •. Further , fo,.,n~f-1\ J2 + 1i /21
-X ).(X-A),;>o,äF-x )(x. --A) < 0, and is true for G(A},G(-A}. By
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of G on ix.I<A. By changing f - 1, we can vary the number of roots from one to three

and meet on the way at least one saddle - node bifurcation.

We can summarize this Section in:

Theorem 8. 1: If ß < ß (J;) - <5 , G ? 0, the invariant sets of the (half period)I I e

Poincare mapping Ir (.f ;"Z ; A ; ~ ; C)· of Duffing ',sequation consist, for f.. sufficient-

ly small, of fixed points and periodic points of period two only - with the pos­

sible exception of a small neighbourhood, vanishing as E-") 0, of X = 0, p = 1,A: Rco;I

~I= - ~/2. These invariant points are in one - to - one correspondence with,those

of JT ( f j 1: ; X: ), eqn. (7. 13) and approach the latter as f -")O. The bifurcation

lines ~s(~;[)' fF(.L,;~) approach those of J/ as [-) O. We recall,L\<crl/4•

This is, in fact, the main conc1usion of this paper.

Clearly, we expect the transition to chaotic motion present in J} (f ;x,)

when f increases through fc near ~; = -~/2 , to occur also in lP, for sma11 ~ •

This is, in fact, the contents o_f a general theorem of van Strien (Ref. 30) •

Comment 8.4: Theorem 8.\ estab1ishes in particular the uniqueness of the

. d' l' f ff" . f 111/4 .... ( r) fper~o ~c so ut~ons 0 Du~ng s equat~on or C > 6" /} + 6 , or anyc

G > 0 (cf. Eqn. (.1.2», if r is only sufficiently 1arge. Indeed, at no stage

did we impose the restriction k( f.. ) = 0(1) as [ -) O. If k( E ) -;>".. as ['-,0, ß --)0
and the limiting form of l? is .A = R , ~ = O. The upper bound on b is due00

to the boundary layer structure used in deriving uniform approximations to

solutions of (1.6) (cf. Sect. I, eqns. (1.7)ff.).

IX. Uniqueness of periodic solutions at high ~ •

Although there is intuitively no doubt that uniqueness will persist even if

A> cr1/4, we shall give a short proof of this below, for the sake of a ~lear

conscience. The method of proof has be~ suggested by a referee of a previous

(:i.ncomplete)version of this paper (Ref.14). In Ref. \4, uniqueness at high 6
was established in a more complicated manner, which also justified the validity

ofapproximants like (3.8) tothe periodic solutions in question. In the following,

this latter topicls left out.
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We assume first C rl/4<ö < B r2/3 and use the variable z: of (1.12). By

(9.1)

Liapunov methods, we establish first a uniform bound on the solutions of (1.6)

for t large enough. Let to this end v(t) = x(t) - (sin t)I/3, so that:

." 2 • 3 (. )2/3 3 2 ('. )1/3 3 h()
€- v + r v + v s l.n t + v . s l.n t + v = t

where h(t) "" O( r t -2/3), h(t) "" O( / t -5/3), if I tl ) b (3/5.

Lemma9.1 :' If Br2/3 ><1 > crl/4, every solution x(t) of (1.6) obeys

eventually: (B small enough)

(9.2)

for t <
Iv(t)! < K,1/5,

- br3/5 (modJl ).

Proof: AssUme first r./t2 < D (6) rD r1/3). With v(t) "" v(t)exp[-c(t-to)/t]
0(

c = kt ' O~O( ~ 2/5, and 'at. Liapunov functionsimilar to (2.11), we establish,

for t < -b t- 3'" /2 the differential inequality 32
I dL-

dtV < (2L)I/2 h(t) exp[C(t - to)/jl(9.3)

where we have used I €.. ~ + 2 t (I - C €. /t 2) v I < (2L) 1(2. Integrating (9.3) and

using L_{t ) "" 0<r2). (cf. Lemma2.I),L(t)sL- exp[-2C(t-t )/I..J , we obtainthatv 0 v 0 (

1/2 2-0(/ 2.(3 1_ 6 I
L(t) = O(t t) after a time interval of O( /"5"" ), o"? 0, starting at t< O., 0I
From:

(9.4)
€. ~ + 2.r (I + C E. / r 2) v = O( ;-2-20<)

I-IX; 2/&) 1- 6we deduce v "" O( r ± after a time interval of 0« ~ / r ) ), G >0, for
J ]

t< '-b r3e( /2. It follows that ';,)G/? v "" O( f'1-:o<) and from the differential

• • ( oe:) ~3G( /2 . h . 2/5 b·equatl.on we obtain v "" 0 r - ," for t < -b I • W1t 0( -., • ..;we0 ta1nI
the statement (9.2) •

. If r21E< B], we proceed a8 above. with v -vexp[- Cr(t-to)/sl/.
Co_ent 9•.]: The proof above also establishes bounds on Iv(t)1 , Iv(t)1 on

3~/2 e(

-to< t < -b r . by choosing C • kt ' 0 ~o< ~ 2/5. .

Le1lllUl9.2: If rt(- t:o)', I dl/d~ ~-t:o) I< c, then '1(.1: )1, Idt /d'tt< D for'

t € (-'r 0 + ~, ~ 0); ~ may be made arbi traril;y., small, forE /t 8/5 small enough

( 1. of (J 0 ] 2» 0'
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1 (d~ ) 2 v 4L = 2" \ y ~ + 2( + 4 7.
(9.5)

shows that L('C ).< const( 'Co) for ILI<Zo. It follows that I'tf<D, Id? /dZ/<D after

a time interval of O( f /r 8/5) •

Lemma9.3: If B ,2/3)6 ? Cr 1/4, every solution x(t) of (1.6) which obeys

\X('to,3/5)\ < D/l/5, l~('c.or3/5)1< Dt-2/5 obeys at t = tl, a<tl<J/'-a:

Iv( -c)\ < Kr t\~(t)1 < K (9.6)

The proof is the same as for Lemma9.1.

Connnent 9.2.: According to Lemmas2.1, 9.1-3, the rectangle n: Iv(t)1 <: CI'

Iv(t) 1< C2 [;-1/2 at t - -Ji./2 is mapped by the solutions of (1.6) into the
-.J

rectangle (9.6) at t - TI /2, which is strictly contained in -D. Thus, the half

period Poincare map has at leastone fixed point, given by an odd periodic solution

x (t).o

Consider now the difference between two solutions x1,xo of (1.6): u • Xl - xo:

~ ü + 2 r u + 3 w2 u = 0
2 2

with w = (Xl + xlxo + xo)/3.

Lemma9.4: Let:

(9.7)

# 2 2
~ (&u + 2tu(1 -f-O</2,1A-» u 2 2

L(u, u, t) = !2 : + -2- (3w +f;C<

-3/5 • •

If ~ = cr ' L(u,u,t) is strictly positive definite in u, u for.
and, if u, u are solutions of (9.7):

-2}C() (9.8)

t'< -dt3/5

L(u,u,t) < L(t) expL--20< (t - t )J .o 0 (9.9)

for t< - dr3/5:
Proof: Wewrite u = u exp[- o«t - t )J. Then, L(u,~,t) 'S L(ü,fi,t)exp[-2o«t-t )].--- 0 0

From the differential equation for ü, we verify cilL/dt < 0 if t< - d'" 3/5. To

this end, we use \w2J>c,2/5,lw :~~Cltl/5 if t<- dr3/5, as shown in Lemma9.1,
This ends the proof.

From (9.8),(9.9), we deduce: •

(9.10)I e.tt~. 2r u(l ..of,.o(/2t)'l < (2L(to),lJ2 exp[-o«t - to)]

From (9.10), we conclude that'\l;i~~:)~ time &.If < 1/0<, starting at to:

C r 'exp[--«t - to)] (9.11)
differential equation (9.7) to establish abound

fort< ':'d 1'3/5.
on lu(t)1 ,



2
Since, by Lemma2.1, L(to) = O(E. + r- ), l.re see thatlu(t)\, Idu/dtlmay

small as one wishes at t ~ - dr- 315, provided t< B is small enough.

Lemma9.5: \u(t: )f, Idu/d'C (z )1< const/u(-t)1 ,\du/d~ (- '0)1____ 0 0 0
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be made as

(9.13)

The proof is obtained from Gronwall's inequality applied to:~

S" -2(r-~')/}Iu(~) •• A + B exp[- ~('C+to)J - _7:•.e 2 - 1 3if(r') u(,')d"Z' (9.14)
-8/5 . -1/5

where " V • ~ t ' B • 0 (V ), w • wr .
ting the reasoning of Lemma9.4 for t >0, we deduce that L(Ji 12) -< C<f)L(-Ji/2), with

C(t)~O aSf-'tO. Now, from Lenuna9.1, .w(t)=(sin t)1/3 + O(r),(cf. C~mment9.1) so. I
that C1L(-jl/2)< L(n 12)<C2L(-Jl/2), with CI ,C2,...,I. It follows that the half period

Poincar~ map is, for r small enough, a contraction in the norm L(u,u,-JlI2). Thus:
f '12/3 -I rl/4 ff" 1 11 (I 6)Theorem 9.1: I BI :>.6...,. D , B, D su l.cl.ent y sma , eqn. •

admits of a unique (odd) periodic solution xo(t) for r large enough.

We turn next to theregime A '>·B,-.2/3; we uSe eqns. (l.8), (l.9), with the

variab les (1.7). Quali tati vely, if ~ < Br 2/3,. wi th B small, then a motion

starting with x(O) = a+ 0 , i(O) = 0 gets close to (s~n t)1/3 within a half

period of the external force (if r is large enough , cf. Lemma9. I). If 6 is

1 h () 1··· .. 1 (. )1/3 darger, t en : a the l.ml.tl.ng motl.on l.S no longer c ose to Sl.n t an

(b) the approach to the periodic solution may extend over many 2Jf periods.

We shall only sketch the proof of uniqueness, since it is essentially

the same as that of Theorems 3.1, 3.2. Details are given in Refs. 14,31. First,

we have:

Lemma9.6: If A '> B 1'2/3, eqn. (1.8) admits of a (2Ji- odd) periodic

solution zp(t), which departs from

z(n)(t) = z (t) +"& zl(t) + E2z2(t) +•••• +E'n z (t) (9.15)a 0 n

uniformly by O(t ~n+I); zo(t) is the unique periodic solution of (1.9) and
z.(t) are obtained by formal iteration of (1.8).l.

The proof is done by Newton' s met~od, noting that.?t (z~n) (t» = O(f cn+l)

{cf. (3. 10» "and using two solutions of the variational equation to (1.8)

around·z{n){t). Estimates ofthesesolutions are obtained by WKBmethods {seea

Refs.14,31r~
,.,,-<;'.':"',':',;.'.:,': ..•

FoI';·41tiqueness, we show:
, ,"',.0 . .';:,:).;~:\t~ - "
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with

Lemma 9.7: The difference u(t) = z(t) - zp(t) obeys !u(t)!<C exp[-l(t-to)]

1= kt- , k sufficiently small, provided \u(t )\ , \ü(t )1 are small enough.
o 0

This is proved by transforming to an integral equation and investigating the

conditions for contraction.

To ensure that t exists, with the properties of Lemma 9.7, we prove, byo

Liapunov function methods:

Lemma 9.8: There exists a time t , so that 1 u(t )\ = O( E;).----- 0 0

It turns out (see Refs.14,31),that this is sufficient.to state:

Theorem 9.2:Eqn. (1.6) admits of a unique solution if D ~ B r2/3, for r
large enough.

....•

This closes the discussion of the uniqueness problem at high I

X. Summary

The above establishes the existence ofan infinite sequence of bifurcation

curves alternatively of th~ saddle - node and odd - 2J! simply periodic type

for large C',/:), ,.J k In ,..-.in the j" - Ä plane of the Duffing equation (1. I). Üith

Theorem 8.1, this is even the complete picture of bifurcations and invariant sets

of the (half period) Poincare map if the damping is large enough. If .6 » CI~ 1/4,

the situation is simple and described in Theorems 9.1, 9.2. The exposition has

the drawback that much detail is present, part of which is inessential to the

appearance of bifurcations and chaos.

Indeed, some of the "kinematical" complications, with two special solutions

(10.1)

it is

This

~,XR of eqn. (1.6) (cf. Sect.III), boundary layers, etc. may be seen in pure

form in the linear equation:

.e • •• 1/3

E. x + 2t x + x • (nn t) .
Eqn. "(10.1) has on1y one periodic solution for a11 [.,t .If Itl>O,
close to the outer expansion associated to (~O.I), for small E,~ •

expansion is obtainedby iteratingqO.I):

x....t • (sint) 1/3_ (2 ~/3) (sin.t.).-2/3ou , " ".

2

cos t + O( ( + r )
,

(10.2)
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The terms of the expansion diverge as t -70; for smalllt I, we match it to a boundary

layer correction. Changing variables in (10.1) to:

x=e.1/6X ,t=el/Zr: (10.3)

we obtain:

dZX

dt2
= 1/3 T?/3

z: -c-­18

From (10.4), we can"darive a left and a right hand inner expansion: the left

hand expansion is made up of solutions of (10.4) (decomposed into coefficients
1/3

of powers of f- ) behaving e.g. like )L ~ r: as "C --,.0 , etc.; the right hand~LO "

expansion is obtained as in eqns. (3.21) ff., Sect. 111. These expansions are

improved to left and right hand solutions ~, xR of (10.4) starting from

approximants, e.g.:

x (i) = x(K,L)x. (t) + €;1/6 x~Q)l.(t)aL 0 0 1 1 (10.5)

as in (3.8). The differences:

6X = ~-1/6(XL(0) - xR(O», b X' = E.I /3 ( d~ (0) _ dXR (0»
dt dt

(10.6)

(10.7)

have finite limits, not both vanishing, as € - O.The periodic solution xp(t)

of (10.1) isobtained by superimposing ort ~, xR suitable damped oscillations,

i.e. solutions of:

f-.v+zt;'+v=O

We call vL(t), vR(t) the solutions of (10.7) which are such that:

~(t) = ~(t) + vL(t), t<' 0 ~(t) = ~(t) + vR(t) , t '>0 (10.8)

To obtain the magnitude of vL(t), vR(t), we notice that, if IVLI<€1/6 at t = 0,
1/6 kJl/2

then vR(Ji/2).w .E- c- , if r· k E;. ln 1/(, , k - 0(1); also, (dv,R/d 'Z )( Ji /2) ..•...

~1/6~~/2.Thus, the half period Poincari map sends dömains of size ~s,s>I/6 at

. . s+kjj .• h d' (d Il-)t--~/2 into a doma1n of S1ze e around a p01nt W1t coor 1nates vR' vR~~ -
1/6 M/2 1/6+kJi/~

(; +k at t • ]//2. In pa-rti~l,art,the'fixed point haa coordinates VRtdvR/d~~E-

Por 811I&11 e, I' the w1iquene •• 0; the fixed point may alaobe interpreted
as an (a.symptotj.c) "loss of memory" of the (halfperiod) Poincare map about the

initial phase "Po in a disk ,vR,2 + \dVR/d"C12< C( f;1/6 + kJi /2) 2 at t • - i"/2

(cf. eqn.(4.3)~ Indeed, the initial conditions f~r vR(t), eqn. (10.8) at t • 0

vR(O) • ~1/6 (6X + oca:k1fh ,dvR/d"C (0) • ~1/6(6 X' + O( ~ kli» and the

about't' 1s c"ontl1ined in the 0 ( E: k i1) terms .~ow, the phase ~ .of theo. -
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,.. 1 ' "1:'/2 ( d' d' k f d' 1/6-rkrl/2), ,so ut10n at t =~ measure 1n a 1S 0 ra 1US E . 1S stab1e aga1nst

sma11 displacements of the initial va1ues at t = O. Thus, its sensitivity to yro

vanishes as t ~ 0 and the coordinates of the fixed point are fixed mere1y by

AX, t-X'. (eqn. (lO.6»

This is precise1y what happens also for the Duffing equation if the damping

is high enough. However, the stabi1ity of the phase at t =~/2 with respect to

sma11 changes of the initial conditions at t •••0 ceases to hold if the damping

is sma11 enough. To describe the mechanism through which this occurs, consider

the nonlinear ana10gue of (lO.7) appearing inthe Duffing equation: (e I: eR of eqn.

(4.2»:

(10.9)= 0

of (6.4),(6.5), g is a correction tok = k c-kt

d2- i sI /8 dw~+2---
d02 ~(t) d9

.... . kt
(1.15),w-wt

g of (6.4). If t...€. - 0, the (almost) harmonic oscillation described by the

linear part of (10.9) acquires an additional phase const.R2 9 1/4 , where R is

,.,J -3/8
the amplitude of the osci1lation. In the variabieG , kNe ; although negli-

with f of

gible for large e , this perturbation is not integrable and leads to sizable

effects (,..,el/4) for 1arge e . If t, E.- are finite (but t ~o as t: --;> 0), the

. -'fe ,_ -3/8
amplitude R decreases with time l1ke e , w1th c = t~; ; it turns out that

the additional phase no longer increases indefinitely, hut rather levels off at

a value f -1/3 when 't~f-l; it is still roughly proportional to the square of

the amplitude R at some finite value of e .o

Now, if f - 0, no matter how small the extension of the disk of initial

conditions in the (uR' dUR/d 't") plane at 'C =- 0 (the notation of (6.1», it

generates trajectories of (10.9) that, although possessing almost the same

amplitude, reach macroscopically different phases, if we on1y wait 10ng enough in ~.

dvLlde plane (cf. eqp. (4.3» of initial conditions

kJ/
E •

If f: -I 0 (1'" 0), the e~tension of the

~3/16 EkJi/2• h1n t e VL'

at t •••-11""/2 isitself N

image at t - 0 of the disk D with radius
•

·11/2 (in the disk (,')f radiusof the phase at

en.an~~eswithin the disk D obtained by varying the phase r oIt follows

may

3/16 ~..kjjE, ."
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kJt
€

rl/3
If this is true, we expeet that, even as [~O, the Poineare map no longer loses

memory of the initial phase at t = -JI /2, but acquires a nontrivial form. This-
is the mapping JI , eqn. (7.13), which does display bifureations and ehaotic

behaviour.

Finally, we indieate roughly why the inelusion of a linear term ky in eqR.

(I.I) is of no importance for the pattern of bifurcations at high r and ~ , pro-

vided k is independent of both. First, the change of variables (1.5) leads to:

• 3
[.x + 2 r x + x + c k x = sin tI

In the outer expansion associated to (IO.II), the terms .~ ! and ·-:.t

(lO.II)

are

unehangeci if E/r--;.0 as E: .••• 0. In the inner expansion with the variables (l.15),

the harmonie term does not oecur in the leading equation (3.5) but only modifies

(3.6) to:
2

+ (3 (.0 + k) L 1 =
(10.12)

Since (_rl/3, the leading terms in the asymptotic behaviour of the solution

are not affeeted by k. Thus, XR, ~ are modifiedwith respeet to the k = 0

situation only through terms whose relative weight vanishes as f~O, if the

matehing in (3.8) is performed at t,.., f'" ,0<'0< < 3/8.

The equations for vL' vR (cf. (4.1), (6.18», whieh contain the nonlinear ­

effects responsible for bifurcations are ehanged , e.g. to:

E- v + 2 t- ~ + (3 xR2 + C k) vRR f R

In the vers ions (4.8), (6.4) of these

(lO.13)

equations, the harmonie termleads to the

addition to the funetion g( e} in the linear part of terms of O( E.3/4 e -1/2},

whose integrals over (j- intervals of O( E- -1/2) vanish as E~O. Thus, in the

limit €~O, these terms do not lead to any change in the phase of the oseillations

and therefore in the asymptotie form (7~13) of the Poincare mapping. In particular,

the sign of k is irrelevant at large f"'

A generalization of the results of this paper to Duffing - like equations

(obtainedby replacing y3 by y2n+1 in (I.I)) and to other forms of the forcing

term· under consideration.
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Appendix A: Proof of Lemma 3.2.

We consider first (3.5) and write:

(.,..) = ..•.1/3"")1b rr-5k/3 - 81/31k () ( )L0.... ~ L...! klo I.- + u t == '(0,K,t" ~ + u
(A. I)

where the bk10 are determined by substitution in (3.5) and equa~ing coefficients

powers of "( 'l:,-5/3 and L:-8/3. The resu1t is a nonlinear equation for u(c):of equa1

2
d u +
di 2 f :~ + 3 1~KL u + 3'ZoKL u2 + u3 = O( 't 1/3 -5(K+l)/3 - 8(L+l)/3tK+1)

(A.2)

As z~-~, the solutions ofthe linear homogeneous part of (A.2) behave 1ike

u ~ exp(;,..tZ)y,sin)(z4/3)1,2tcos
using the variation of the parameters, it is

straightforward to show by a contraction argument that (A.2) admits of a solution

which falls off at infinity like Z 1/3 - 5K/3 - 8Ll3 tK• If 1" 0, the same

argument shows that the solution 1S unique in the c1ass of functions \u( '1: )1 < '( q,

The

The

equations for '(q( 7: ),q '70 are linear and the argument is even simpler.

task is to show that the coefficients bk1q are the same as the~lq of

the bk10 read:

(1. _ 5k _ §l. )xk+1/3 3 3

(3.3). We show tbat the equations determining them are the same. Consider bk10

f' ".../.,..-5/3 ~-8/3 h 'f1rst; wr1t1ng Q I.- = x, (. = y, t e equat10ns or

)'. b ( 2 _ 5k _ 81 )( ..!.. _ 5k _ g )xk y1+1 +2: b
.-- klo 3 3 3 .3 3 3 k,HO kleik, no

(A.3)= 1+ ( 1 + ~ b xk yl )3
K,:Rtlo,O) klo

and it is easy to see that bk10 may be expressed recurrently and uniquely in terms

of b with k'< k,1'~1 or k'~k 1'<1' b = 1.k'1'0 ' , 000

Now, the equations for the ak1q are obtained by substituting (3.1),(3.3) into
-5/3 -8/3

(l.6) and equating coefficients of equa1 powers k,1,q of x - tt , Y = e. t

and z - t2 in turn. As is expected from (1.15), the set of equations for ~10 is
•

decoup1ed from those with higher q and is given imp1icit1y by the same expression

(A.3). If q>O, the ~1q (or bk1q) are obtained recurrently in terms of ~'1'ql

with k'<: k, l'~ 1, q'~ q and permutations.
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Appendix B: Proof of Lemma3.4.

The solutions wl,2(t:;~) depend on S through cf' and the lower limit of inte­

gration in (3.18). At E = 0, P( 't"; E-=0) is given for <:<0 by:

~ ("[; e: =0) = 3 '7 ~o(Z: ) (B. I)

with"1 (L) of (3.22), /Y] (7: )~LI/3 + 0('7:.-1/2) as t;"'---;.--. It is true that,lOO loo

" r -3/8+a Jun~formly on TL = L=E. ',0, a;;>0:

lim (I +r2/3)-lp('[;f,) = (I +(:'2/3)-1 <P("C;O) (B.2)

Indeed,-on an interval ic= I?"LjTo}01.; we have the uniform estimate:(cf.(3.8»:

(B.3)

obtained from the asymptotic expansion (3.7); this implies (B.2). Now, (B.2) implies,

with (3.19):

(B.s)

independently of € , on Ir •

-Now, for Itl'? {,3/8+a, using (3.1), (3.3), xaL(t) and its first two derivatives

b d d f b d b 1 b 1/3 1/3 d h" d "" 0-are oun e rom a ove an e ow y cut , cdt - an t e1r er~vat~ves,cu ';> Cd'7 •

- -3/8. .
Thus, (B. 4) holds a11 the way down to - ( JI /2) 8 --. W~th th1S, Gronwa11, s

inequality leads in (3.18) to:

, I dw./ d 7:. - dw~w)/ d [ Cr ; r ) I <. C t' - 11/6 (B•5)~ ~

l:: • Weas (:·..•.0, at any finite

13/6

- L , independently of E-.o

finite limit w~w)(t: ;0)1

I w. ('L' ; E ) - w~w)( '[ ; (. ) i <' C z:-~ 1

_ JI/2 f. -3/8 <l <

Now, w~w)(t' ; E. ) has a1

for

can then let forma11y f. -;> 0 in (3.18) and obtain:
.r

w (7:.jO) ""w(w)('l;0) + I jR(~(O».p-I/\LjO)
1,2 1,2 1'(7:jO) _.,., T

'T

f -1/:2.sin[ q,'- - (r"jO)dL''']w (t')d't:'
~I 1,2 (B.6)

Eqn. (B.6) has a unique solution wl ,2( t jO) for Z" <const, as follows from (B.4)

and a contraction argument.

We subtract now (B~6) from (3.18), separate out the integral over [- e-3/8+a ':C'oJ ,

bound those on the remaining segments u~ing (B.4) and establish by means of"

Gronwall •s inequal ity and of (H.5) tha t w 1('l ; E.) converges to w1(!' ;0) uniformly

on -IE.-3/8+a,rJ, provided a is chosen appropriately large. The condition on ao

is due to tbe requirement tl1at thephases of wfw) ('r- ; e: ), wfw) (t;0) approach

"b ., b r -3/8+a -r1 'Tb d"" f b"' h """ 3/4 -r 10/3- 0eacot er on - f., ,- •.03.' e con 1t10n or _t 18 to appen 1$ c.. •• ~,
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which means a >3/20. With a further restriction on a, we rnay even ensure that

(B.6)

[ -3/8+a ]dwl/d't([;€-) approaches dwl/d1: (1:;0) on - t ,- To •

Using (B.2) and the fact that w1(t je), w1(Z jO) are f..P(P70) elose at

L = -"[ we deduce by comparing the equations0'
2d w·

-- + l'(t ; t. )~ •• °dl

for [and f: •• 0, that w1(z ; [ ), w1(r ;0) approach each other uniformlyon

[- L ,0Jas €·~o (aswell as their derivatives)o ""

A coarse estimate"through the ~bove steps gives:

\ w( -c je) ~ w( 7; jO)/

for 't on (- 't ,ol.o

) dw " dw 1
- ( L' f;) - - (t: ·0)'d~ ' dL ' •• O( t 15/64) - (8.7)

Appendix C: Proof of Lemma4.6

The object of interest is the energy associated to (4.30):

l(d )2E( (.J) = - 2!2 de
12 13 142

+ 2' w (l + g) + "3 w hl ( e) + 12 w h1 (e ) (C.I)

Now, for small E

(C.2)

;f l-T C 3p 3p-S]. " kt I d X ( ) . . 11· . Th·... t ~ oR e.- ,E , s~nce (.. ~ an R t ~s monoton~ca y ~ncreas~ng. ~s

means:

dE

de
<

2

~I~I2 dO
(C.3)

(C.4)
....

Letting:

e .. e (T E 3p)a oR

using the facts that r'\ dg/dQI de' • g( e ) -< const and w2<: C E, multiplying (C.3)J~ 0

by exp [- C g(9)] and integrating bet-teen GI' e2"/ e :o e~ a

] SI 3 dh1" .~E(G2)exp[-Co(g(92) - 8(91» <E(91) + '3lwl 'd8 lexp[-Cc,{g(e') - g(el~de' (C.5)
9t

Now, it is true

C

, C .C ,., 1+ (C.6)
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.. so that the right hand side of (C.5) is bounded by a constant for all e , if:

Iw(e)I<C(ele )I/S-qa (C.7)

for some q> O. We show in fact first the following:

LemmaC.l: Assume:

(C.8)

with mo(e)->o as e~...,. Assume further that, if el< G<el+T, mo(G)<Cmo(el), .

with C independent of GI. Then E( (-))<const for a11 g.

Proof: LetE(O) =E(G) exp[~cog«(1 )]. Since g(O)", .I/~ 2(cf.(4.9»,E(g)

obeys the same condi tions as E(g ), wi th m (G) rep~aced hy m( {}). From (C. I) ,o

(C.8), we deduce :

(C.9)

for some CI> O. Roughly speaking, the argument is asfollows: as a consequence
3/8

of (C.9) and the fact that hl (G ) -' ( Gi 0 ) ,the cubic and quartic terms in

(C. I) become negligible at high g with respect to the quadratic terms. Thus, if

the· energy becomes unbounded as Q -~"'" , its increase must be due to the quadratic

terms; this,however, contradicts (C.5). To make this precise, consider a pair

(C. 11)

of points EJ2 •• GI + T, G) '> ea• Then (C.5),(C.9) imply:

m2( (~2)( °21 9a)3/4 - m2( GI)( Clil 8)314 < D m3( 81)( (-laI 81) 1/4 (C.IO)

Multiplying by ( gi e 2)3/4 and using:

(J + TI GI-I) -3/4 ~ I - (3/4 - s)TI e)

where 5 -, 0 as gl'-oo, we obtain

m2(G2) < m2( e)[1 - 0/4 -(5)TI e)l (C. )2)

where 6" ~ 0 if G1--'1 000 • In (C.12) we have used the fact that m(~.) -? 0 as

e~~. Iterating (C.)2) for a sequence of points lQ~I, On" en_) + T, we
obtain:

for small ~. and

increases indefini~solutions are considered.

depf!ndence of h. ( 0)

m( Q 1)

m( QI..) < const 3/8- ~) (C. ),3)n •

withcs'I-"'> 0 if eC'-' With (C.8) ,(Co 9), we seethatfw( () )1< C g6"~, which

complies with (C.7) if ~1 is large enough. !his ends the proof.

Eqn. (4.30) i6 dependent on e essentially through the interval
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-1/2+5
and (J < E .: ,6';>0. The bound (C. B) is assumed to be independent of E and to hold

on fl1 < () < f., -1/2+6 •

According to Lemma C.I, we are 1eft with the obvious1y simpler problem of

justifying (C.B). To this end, we let:

W_w(e/e)3/Ba (C.14)

which leads to:

d2W + ~.!..dW

de2 4 e da
where:

-'2

2'" 3 hl ( e )
+ W(I + K(e» + W hI(G) + W -3-- - 0 (C.I5)

K( e) • g 15 1
- 64 e2

It is true that:

, hl = h ( e / e ) 3/B1 a (C. 16)

dK- .,
da O( e -3) , dhl = O( -l-.e-J/4+ 3/4.1/2) h «() --.J T-I /2deo [, t-J 'I oR (C.I7)

ive shall show that the energy L( e) associated to (C. 15):

I ( dW)2 w2·· w3 ~ w4 r- 2L(e ) ., 2" (i'e + T (I + K) + "3 hl + 12 hl

has the property L( e) -;po 0 as f) -"" •

(C.IB)

(C.19)

(C.20)

Comment C.2: .If L(e )'-7.0, IW(9 )l,/dW/dOl also vanish as e~"". Then:.,

( e )3/4. 'i 3 d'.J W 3 W2 r e )3/4E(G) ., - [L(e}+ --- + --]= (- m (e)Ga 4 dl1 e B {j2 \ ea 0

C1ear1y, L(e)(1 -Ci/e )<m «(l )<L(O)(I +CI./v) and thus m (e-t-sT)<Cm «(..I) if. 0 0 0

L (e +sT) < CL( e ), :b < s < i.
Concerning L «(-l ), we s ta te fi rs t :

3p 3p-.)"]Lemma C.2: L(~) is bounded on IToR C ,t by a constant Lo' independent

of t •
234

Proof: As a consequence of (C.I8), W ,lW I,W <const-L, where the constant

is independent of ~ • Integration of:
.,J

dL (dK dhl d -'2.\de < const-L \ da I +1 d g 1+1 d" (hl)Y

leads then to the statement of the Le~.

Comment :C.3: ~.ntegration of (C.2.0) between G and e +sT leads to,;;,(o< s<!)

L(e~T) -< C L( e )

with a constant C closeto unity. WithLemma C.I and Comment C.2, the proof

of Lemma4.6is completedif we show that L(e)""tOl~s G~"" (cf.Comment C.I).
. ' ." i<-.""-~',~,'<i-

(C.21)
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(C.22)

To establish this, we describe in more detail the motion (C.I5) by comparing

it with the motion W(o) (e) in the potential of (C.I5), however at a fixed Q = (1)

and without damping:

d2W(0) 2~ 3
-- + W(o)(1 + K(9 1» + W(o) h (G ) + 1. W(o) 'b2(G)" 0
dQ2 1 1 3 1 1

Concerning the latter, we have the following, which is straightforward:

Lemma C.3: (i) The motions W(o)(fl ) with eilergy bounded by L are periodic,----- 0

with periods bounded from above (by Cu) and from below(by Cd(Lo»' independently

of E. ; (ii) given 2 >k »0, there exists kI <. 1, independent of the initial conditions,

so that, if the motion W(o) (e) has period T , the e -interval Tk for whicho . 0

T •o

We compare nextthe solutions of (C.IS) to those of (C.22), over a time

interval pC , P large, using Gronwa11's inequality. The calculations are easy;u

d '1 "R f 15eta~ s are g~ven ~n e. :

(C.23)
(i) max [IW( EI ) - W(o) (e)1 , I(~~
(ii) if:

Lemma C.4: Assume W( (,)), W(o) (G) obey the same initial conditions at 0 = 8);

the energy of w(o)(e) is L. Then, over a time interval of 1ength pC :
(0) C(p,L) u

_ dW ) (e )11 < 0
d(l - GI

(C.24)
C) (p,Lo)

L(?, 2 :::B(OI)
GI

W( EI) undergoes exactly one passage through -zero at e = e between two succeSS1ven

maxima of \W(o) (Q ) \; if e is the zero of W(o) (0 ), then:
no C(p,L )

19 -f} I ~ fl fL'0 (C.2S)n no 1

(iii) if L obeys (C.2~), the time interval in aperiod of W(e ) where

(dW/d~)2» kL/2 is bounded from be10w by kIT , with T the period of W(o) •o 0

Comment C.4: According to Lemma C.4, those motions of (C.IS) are certain to

be oscillatory for which the energy is high enough. If we choose e) so that, e.g.

.. . .
Lo> 2 B( e 1) (cf. (C.24», we are certa1n to have osc~llatory moUons, at least

over an interval of length pC .• If the motion is not guaranteed to be oscillatoryu

(L ~ B ( 9 1»' the argument of Lemma C. 2 shows that:

L( GI + pCu) ~ B( 91)(1 + o()
(C.26)

with:
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(C.27)

We show next:

Lemma C.5: If L >o 2B( el), then, if

Lo

k C--= BM(op u1+---
e}

81 is large enough:

(C.2B)

wi th some k < I.o

(C.29)

Further , for e I> 3kpC/2,

0< k< 2, (V is the potential in (C. 10»:
91+k pC

I > k L( e ) f.1- d {) > 3k L( e ) J huI 2 . I· 4Q· 8 I G
V(W)< kL/2 el

(C.30)

Thus:

k
4

< L( HI)

+ k pC / Ei Io u

(C.31)

for O. large andS small enough. With Comment C.4, we obtain:

L( el+pCu) < max [L/(I + koPCu/ GI)' B( GI)(I + 0( )J (C.32)

ft. .

Since, for Gi large, the maximum is achieved by the first term, the proof 1S

completed.

Finally, we state:

Lemma C.6: For any 6>0, there exists C-o so that, if E<c-o(<5), L(t!;E)

becomes and stays less than 6 in the time interval T E-3p< t <E:3p-~oR

Comment C.S: This is the precise statement of L( e; f ) ->' 0 as G -) ..., (cf.

Comment C. I)
Proof: We notice first that:

< B ( ~1+pC )M u

B( O}+IltLi)

(C.33)

Indeed, this is

(C.34)
pC

< (1 +~)2
g}

that, for 80y m, the upper bound on the

to:equivalent
- k C

op u

+ (1
1.

which is true since k <1.o

by oscillatory motions. By Lemma C.S, the
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upper bound is:

(C.35)

L
< K.-2.­k

m 0

L
o
k pC
o u J+ e +(j-l)pC

1 u

m

1/11j ci

By choosing ~ small enough, we can allow for as many oscillations as we wish

on [T €3p ~3p~$J and thus cause the upper bound BMto become as small asoR '

desired. By LemmaC. I, if BM<,g) < <5 I' then L < const ~6j for e < 9 < E..3p- S •

Appendix D: Proof of Theorem S.2

. -~
Consider first the mapping: lPi : (A, 'Y0) -;:> (R, If' ) (r =- E );;;: (1\, Cf,& )

with (R, \f ) of eqns •. (S.14-IS) and ~ = 3kJf 116 of LemmaS.3.

have any number of derivatives with respect to A, 't' ,o

continuous, with respect to c as [. -"? O.

Proof: Consider the sequence of transformations (S.22), (S.26), supplemen-

ted by CommentS.4. At every fixed G , they imply:

? (R, \f')/ "J (RS' 'f 5) = 1 + O(h + g) (D. 1)

and:

;: O( h + g) (D.2)

whel'e .'" means of the same order. It is thus sufficient to prove the statement

of the -b
Lemmafor RS' <f S(t = -E );::: RSp CfS.\

obey (S.23),(S.29). The right hand sides

as functions of ASo' o/So. Now,

of (S.23), (S.29) are trigono -

metric polynomials of Z, eqn. (S.21), with coefficients var~ous powers of R

(or RS in eqn. (5.29». Taking derivatives on both sides of (S.23), (S.29) with

respect to ASo' we obtain a pair of linear differential equations for 'dRSld.ASO'

d CPS/~ASO' on the interval [g , ~ ('e •• - ( -f)] • It is convenient to write:
o 6

f S( G) •• Y' S(e ) + 2~ A;o lh2d 9' (D.3)

so that the equations for PA -dR/?ASo - 1, ~ ••:-es/~ ASo read:

-&a(1 + fA ) + ap(f.;,...- 172A.501h2d 9' ) Q (D.4)

Aso)h2 - 172eARSh2+ bR(l+e,.) +b4>(fA - -f2.Aso Jh2de') (D:S)
00
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where aR, a4' bR, bt> are functions of e (also through the solutions R5(e ), T"5( (j)

of (5.23), (5.29», with the order of magnitude shown under the 0(-) sign in

(5.23), (5.29). Integrating from e to e in (D.4),(D.5), usingthe initialo

conditions r~(0 ): fÄ( e ) = 0 and adding, we obtain:
- 0 oe

I~(e )\+llf,,(G)1 ~ sr<e) + S[s(e') + 172 HS h2(e')][ 1~(G,)'1 +\fA.(e')i] ·de'
~o

with:

(D.6)

(5.52) and 0 < f «~M. Further ,

[Sf(H)/ < ·C( (-4-q + &1/8)

for ~ small enough:
,e

J (Is(e')1
Go

where we have used

C

(ln 1.. )2/3E.

using (S.24),(5.23):

(D.9)

(D.lO)

with q>O. It follows fromGronwall's inequality thai (D.6) implies:

1~,(fJ)/ , I f,,,'<G)/ <:: CI( e-q + f-q/2) (D. 11 )

The same majorizations hold for the derivatives

(D. 12)

Consider next the second derivatives, e.g. with respect to)\ • Differentiating

(D.4), (D.S) with respect to A , one obtains a set of linear equations for ~,,_,Y'AA. ;- -
the coefficients of P"I\.,'f.l\A are the same as those of f'j\,'fl\ in (D.4),(D.5). The

free termcontains expressions like ( 'JaR/'JRS)(l +('",)2, etc. The term ')aR/dRS

has the same order of magnitude as the right hand side of (S.23). Using the

estimates (D.II) and analogues, we conclude that the free terms are majorized

like (D.IO). Gronwall's inequality yields then the desired result. The same

argument applies to the higher derivatives,

Connnent D.l: The estimate: fI(-~-~)

)~ / 'JA (-E-~). - .2. A· S h2d~'
S 50 12 50 9~

differs by terms of O(~p) ,p>O from 'dtf /'JA, eqn. (5.35).o

Lemma D.2: If f>fm'O' RS'~~ have a derivative with respect tof, eqn.(5.53),

continuous with respect to e as e...,. o.

Proof: Accordingto\(S.:S4), if ~>fm' the functions Pf == ?Rs/'df ,fr :'dfs/'if
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".

obey a linear equation with coefficients and free terms of the same order of

magnitude as those of (D.4), (D.5). Inequalities similar to (D.U) may be obtained

s;

this, we write at f)~•••8(l: •••-f.- ),'using (5.12,),(5.14-15),(5.40):

•••RScos(Gs-G +Cf'~)z.kt(Gs)+~/6· ; UL'(-E-~)'= -V3 R sin(G,s-G +<f~).skt(Q~)-~/6
o 0 (D.13)

for fr, 'ff .
)

With

thus

With the help of the two solutions VI'V2 of (5.42), we obtain the coefficients

A,B in (5.45) as:

A(R~,Ifs.)=[3 R.scos(Go-If&) (D. 14)

Clearly, A,B have derivatives of any order with respect to RS' ep~ , but these

. O' f) -I 12 . .. .
are not cont1nuous as E -" , Silmce 0 0 ~ & • Tak1ng der1vat1ves w1th respect

to R~ ,ep~ in the integral equation (5.45), we conclude, using the boundedness

of UL of Lemma 5.5 and Gronwall's Lemma that, for ~ small enough, all derivatives

of UL, U{ exist and stay bounded as f -;>0.

With Lemmas D.I,D.2, the proof of Theorem 5.2 is completed.

Comment D.2: The derivatives)ULoldRJ ,ete differ by quantities of O(~s),

s '70 from the estimates:

(D.15)

Appendix E: Proof of Lemma 6.2

Several parts of the proof are similar to Appendix D. The change h(0)~ -k(e)

is not, however, totally harmless, because h,k have different orders of magnitude.

Eqns. (D.I),(D.2) are the same, provided we replace O(h+g) by O(k+g) and we

move over to R5 ( e ), ~5 ({q. We denote RS (eoR) •••RSR' ~ 5 ( e oR) •••IfSR,RS (e0) •••R50

and introduce:
e

~ 5 ( g) ••• lf S( e) + ;4 1k2 R~ d e' (E • I)
@Oll

The equations for ('R;:~RSI d RSR - 1, <fR'" dlf SI 'dRSR read (cf. (D.4), (D.S»:
e

:9 eR • aR(I+'fR) + aep(ifR - 172i RS(9')(I + eR) k2d9' ) (E.2a)
'l0ll

e

~~B..bR(I+eR) + b f (~R - 172S RS(B') (l + eR) k2d9' ) (E.2b)
. " . 6oA,
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fI

+ S (s<.e') + A( e, e'»(IPR(Q')I+/fR(e')/ ) dll'
9J

'..
4 2

with the notation of Appendix D;now, taR' ,Iat', etc •. are O( k + k g ) •

Integrating (E.2a,b) from e~ to e , inverting the order of integrals; using

f R(fl ) = 0, 'Y R(e. .) = 0 and adding the resul ting equations, we obtain the

inequality:

, (E. 3)

(E.5)

(E.4)

(E.6)

g'

f k2(ett) Rs(G")de"] dei<.':c e;I/3
ea

e

A( (), (I') = k2(e') S (\aA-,1+lb.pl ) dO" < C k2(e')(e,)-1/2e' 't"

With (E.S), Gronwall's inequality applied to (E.3) gives abound:
e

I f'R(e)I+I~R(e )\ < Sf(e) + cf Sf(e')(S(GI) + k2(e')(e,)-1/2)d&'< c 6:1/3
Ba

...-...,

Eqn. (E.6) implies that the matrix elements of the first column ofD~R2' eqn.(6.20»)

,~'hich is unbounded as E --? O.

are bounded as [-70. On the 'other hand, using
EI

d'fS/ ~RS.a(e ) < const S k2de'
(Ja..

(E. I) :

(E.7)

free

In the same manner, we treat f'4' = dRS/JrSl' <t''f'= df/dfsa - I. However, the
(If) -} /2

terms are different, and Sf ( (~) = 0 (8 a ). Ins tead of (E. 7), we obtain

(:ir 5/';) IfSJ)(G) < const, as E -"70.

We prove now the continuity of R (E) ,r (E..) as E,-'> o. Essentially, the00 00 ,

reasons for continuity are: (i) the initial conditions at 8(ToR) for eqns.(S.23),

(5.29) (with h~-k) are continuous as a function of E. ; indeed, in eqn. (6.18),

the dependence on E:. (in 1and '( R) is such that it leads to changes of O(t) in

uR' duR/d 't ( L = ToR)' and this in Rsa' Y'5<1as we move away from E. = 0; (ii) over

1: - intervals of oCI -b), 0<' b <. I, E..kt --- 1 and we can compare directly the equations

fCIi RS( e ; E:. ), RS( e jO) (and those for \f' S) ; (Lii) the changes in RS( 8; c:. ) ,RS( e;o )

for e intervals larger than t-h are yanishing as c~O. We need to make (H)

precise and fixb. Thedifferences .6 R( e ; E.) -R( e;E) ,.. R(6l;0) obey:

:e l1RS - aiR ~RS + 8'14'/14'S+ O( 6S)
'd ~ "'" 7 ... 2 2
diAq,s- b1R6RS + bl<f>.AcPs - 24 6(k R) + 0(.65)

(E.8a)

(E.8b)

where !J S - A (k4+k2g+ Idg/d9/), the difference between th~ values of the brac~ets
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at e and € ••• 0; if 1:< -r-b,O <b< I, h( &=0) :f: 0; the terms aIR' etc. depend on

both R(e;S),R(e;O), but are bounded in the same manner as the aR,aep,etc.jof' (E.2a,b),

because M, eqn. (S.13), is independent of & .The term Ä S is estimated as fol­

lows: (i) the dependence on & is present in the term E-kt of k( e) and in the

functions LR(~;S) of both k(B) and g(8);(ii) it is true.that I(R(f:;t:) -ZR(O;t")1

<: c [,,3/4 z: 7/~ as follows from the inner expansion (3.4); (Hi) it follows that

the change in k is O(kLll/l + k(1 - E..kt» = O(k c3/4.-2b + k r I-b ) =

O(k fl-b) on a r interval "t<1'-b; (iv) the change in g is O(g h"l. /1 ); (v) it

follows that Ö S = O( S ·11~b). Using the inequality:

t::.<f,'S ~ D. r +.1- 1;(k2R2)dg, (E.9)5 24 e
integrating (E.8) from 9 to e , inverting integrals and using the initiala

conditions of O( 1" ), we conclude as before:

16RS(e)1 ,IAZfs(fl)1 =O(ll-b),

f. ",,-4b/3] .for_ 9 f LO'a.' ' • F1nally, we add the integrals from t-4b/3 to 0 (f:)o

(E.lO)

(to infinity for E. = 0); they·. are OCr2b/3). Für b = 3/5, we obtain, uniformly,

IARS(e)I,/6.\fS«(l)l = 0('\"2/5), if k'" 0(1) as E-) O. This establishes the continuity

of RS (e ), 'fS (e ) as [-> 0 and thus of R (f.-), 'f ([,), as stated in the Lemma.o 0 0 0 00 00

~-4b/3 cNotice, if 9< I , li 'fS( ) = O( f. ) as (-> 0, for same c ?o.

We turn next to the continuity in E.. of the derivatives 'dRS(G)/ ,";)RSa''JY'(e)/dRSa',-'

uniformly in 9 , and thus of the matrix elements of nvR2, eqn. (6.2a). We

subtract to this end the corresponding equations (E.2) written for f. and f', =0

and notice that, with the notation (E.8):

.6 aR = 0 ( /J S + S D. R + S A 'f) ••.0 (S D. y»
(E. I I)

Again, application of Gronwall 's Lemmashows that, on [9,,' -4b/3], the changesa

\ td'RI ,Iö 't'RIare less than f" c. The changes for (:r>t-4b/3 vanish as l:-> 0, which

proves our statement.
• 2 2 2- 2

We can now bound the second derivatives d R/ 'dR,.,< , 0 'f /oR. , etc. To this
.a:-: . '04 .,

end, we differentiate (E.2a,b) with respect to RS.' and obtain a set of t"!Qaequations,'a

with the unknowns fRR,fRR•AB with (E.2), we can integrate from ~aL to EI ,

change the order of integration, use initial conditions and obtain an inequality

like (E.~) for from this, the integral is the same as in (E.3).
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The free term Sf( e) is, however, different; it contains now contributions from

el

+f R)<fR +Iar~i +lav,yk2(e")(1+fR(fJ"»deJdfl'
e (E. 12)a

+(a~>b)
2

The dominant term is a 4>c:r IpR ; using (E.7), we obtain:

S(Z)(~) • O(ln ~ ) (E.13)f U E;.

and thus (I

\ f'RR(~) I, I yRR(e) 1= O(ln i); <e RR = OOk2d&') (E.14)
&c"l

A simi1ar analysis for the other equations invo1ving f~f,efR,etc)show

that the va1ues ofthe 1atter are bounded by constants as E. -40.

We can proceed this way for the higher derivatives; the on1y change, in each

pair of equations, corresponding to each derivative (e.g. rRk c:e1, 'f Rk'f 1)

occurs in the free term. The dominant term at a given order p = k+1 of the
9 0'

derivatives occurs in fRP, ··\fRPand is ~ f k4de,(Sk2dO" )p,=:0(i'(2-p)/3).
9.· &"

The statement concerning the derivativeswith respect to p is obtained

ana1ogous1y.

Appendix F: Proof of Lemma7.2

We give first some comments; the proof is then divided inta a number of

steps, indexed with 1etters.
.-

(a) We restrict ourse1ves to 0 < f<i. Then, the (mod 2.11) in (7.13) p1ays no

ro1e and we can ta!f.e -Ji <x.< Jj. J/(:t) has on1y two extrema, X • =1' -.1: (- Ji -.x) ifm1n

.2:>0« 0), x. --.,I. IfZ,:>O«O),X . '>«)~ •max , m1n max

(b) If 0 <Z<J1j2, f2u(2)< fZd(f). Ind'eed, at ~-1i-J;, Jj"(f;'t·f): J} (f;;)

• .,.jj+~< -~. It follows that (1Z· (2::)<Jf -];~ ••. Thus,'t . lies outsideI u nun m1n·

[- fZu'fz) andit"cannot be part of a superstable orbit of JJ(f~)' 1.e. f2d('ZJ>

F2u~)'

If l"/2 <~<Jf ~) < fzu(~)' Now,Jl <f;-f )Jp~~.L;> jj -.2!. Thus, (by _

< r ;-f », - f 2d(x,-,I, 1.e. X. max ,.1-f2d' f 2dJ•
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(c) Given 0< f. L- f ' f]' the e~uation JI (f;}.) = 0< c~not have more than t'-lO
solutiolls w~th Itl < Ji • If 0< = 1+(~_), a fixed point of J} , we denote its pair

9
(d) From (7.30), we verify SO}) < O. This has the consequences (Ref. ,p.97):

(i) S(Ji p) < 0, for· all p'> 0; (ii)(JlP n cannot have a strict1y positive minimum;

(iii) if (JlrX does not change sign on [a,h] and J[P has three fixed points there,
the middle one is unstahle and the other two stahle; (iv) JJP cannot have more

than three fixed points on an interv~l [a,h] With(Jir)'> 0 (or<: 0).(JI2.. = Jj"oJ{)

(e) Wedescrihe in detail the situation at ); = - JI/2. Manyarguments mayhe

taken over to Z:/: ;..Jf /2. At Z = - JI/Z, for a11 f, 0 < f < Ti , JI mayhe decomposed

into two maps Jf+,_ of L- f ,0] ,Lo,f] into themse1ves. If f > 1, there are

three fixed points \. , X , 'X'+= -X; X is unstable. Hf1. ~ Ji/2., it is clear- 0 - 0 r

geometrically that [0, t J' ['X+, fJ are contracted in turn under JI + into themselves

and to }+.

Consider next the interval fl(-Jl/2) = JT/2<f< fF(-Ji/2);}+) ;;/2 and

X + < Ji /2. All points of [o,::t) are mappedunder Jf eventually into [~ +' X) .

~rther, underJ: (i'+,X',.)~ (l+'f)->[JJ(f;f)'X). Now, if Jf/2<f<f2Ü(-1i'2.),

JI(f;f»Ji/2. Thu~,(jj2)~,>0 on/[J/(f),fJ and Jj2(f;f)<f' (JI2:=Jf~])
If, in addition, P<fF(- :iI/2),\J/2)(X+) <I. Then,from(d](iii),(iv) ahove, it follows

that 't'+<IZ(l)<X, for a11 X in[X+,fJ. Thus,[x.+,pl is contracted under J/2

into itself and to {+' Therefore, the on1y invariant set of JI i5 i}:J.
-2

At f- fzu(-1i/Z), J/ has at least three fixed points: 'i/2, X-+, f2u. From

the above, (JTZ){ >0 on L Jl(fzu)- ~/Z, Pzu] and thus, from (d)(iii),(iv), there

~Z _ I rli2)' \,are no other fixed poi,nts of JJ on [JI/Z, f z) and ~I X (..(+)> 1 at F- f Zu· By the con'

tinuity in'df' of QfZ);{,(t+), this is true for fF< f< f Zu· Indeed, for Jf (f;~ ),

there is on1y one fF' eqns. (7.19-20), with O<fF< Jf. Let then, for fF< f<fzu'.•.

XL' XR be the stahle fixed points of JIZ in [1<f ),fl . Since, e.g. onll'.+, 'Xi,

Xtt>Jj2(X) ~ x.) (X+' x.. R] is mapped into itself and to tRunder JI 2. The correspon­

ding statement is true ~r [XL,x:) and thus JJ Z contracts 4J'f] " i~+l to :tL, ~R·
Thesituation for J} _ 1s and this ends the discussion of the

sitUatiou,/]. -:ii /2.
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(f) Weconsider now the situation -J\fZ <1J <0. If P<fs(~)' eqns.(7.14-15),

Jf has a single fixed point x.+ '::> o. If f< flU(.1;) = -..2:, then l+>A:.+. Thus,

J( P;X) < X+ for -r<~<XT. Since o<{+-Jr(f;k)<~+-X, it follows that[-f,~)

is c~ntracted under Ji into itself and to 1+. The same is true forfX+,pJ, f<-l,. If

. P ') -.1;= f 1u(-Z) , :x +.(X. +; if f < f s (.2:.) , [-f,X+l is mappedunder JI eventua,llY into

Lt+, X}; as above ri +' :x +J""'[X:+,pJ ~IJJ (f ;f)' X +J. Since JF (f;f») -1:. , (Jf2) Ü) > 0

on [JT( f; f ), f] • Thus, as for 2 = - Ji /Z, if P< fs (:1.) and f<'fzu (1:.), JJ has

at most one fixed point ~+ and a pair of period two.

If ß>/J, (];), Jf has three fixed points 1 <O,:t < 0, l >0, X is unstab1e.I }s - 0 + 0

For JJ I['XVI!] :0' ~, the discussion above applies wit~out changes. If f< f IdO:),
Lx:_;~0) is contracted into itself and to X _; also, X < X _; a11 points in

N ..---- -..I _ ~

[f'"X _J approach X + under J} and reach eventually X ):\'._. But LX _' 'X) is contracted___ -.I

undet JI into itse1f ~nl.d/o "\:_. If f> P~(2), X _> ~ • The same reasoning

as above shows that Q}.) ( 'X.) > 0 on [- p , Ji (-f; /l)J 50 that, if f<min [ Jf, fZ/2 )] ,
the invariant set of Jf =jJ I CO~Si5ts of { and a pair of points of period

[-f'x·l
two (at most).

(g) If -Ji<.2.;<-Ji/Z, the situation 15 symmetrica1 to that for -Jf/2<2J< 0,

Ln that the roles of JI , Jf are reversed; t > 0 and if ß.( ,1 (2:), the only+ - 0 i S

fixed point is K _.

(h) If 0 < .2: < Ji /2, there is on1y one fixed point X "/ O,:t <: 0 <:.t • The+ + +

points on l-~, X)reach eventually L~+,X). underJJ ,[:t+, X+]~{t+,PJ-{J/(f;f)' X).

Since P2U(1.)< Jt-.I.: (see (b» and I( f;f» -~ if f<f2U(~)' it follows

that\2T2)~ >0 on [JJ(f;f),pJ • Thus, the invariant set of JT contains l+ and
possibly one pair of period two at most.

(i) If Jj /2 <.L < Jj , the situation is synnnetrical : there is only one

....• -2 f JI]
fixed point X < 0, Y _'.:> X_ and (J ).1("> ° on [-F, I (F ;-f) ~ as a consequence•

of f2d(2;) < .2: (see (b».
Tbis endstbeproof of Lemma7.2.
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