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The paper presents a proof that the Duffing equation:

§‘+ 2 A § + y3 = fﬂ cos t

admits of an infinite sequence of bifurcation curves in the [-A plane, alternately
of the saddle - node and odd - simply 2% -+périodic type, whose maxima lie at large

[ along the line:

1 - 1 a
Ac(t") TEs In 3% 1n 1n + Co

withna constant Co given in the text. The positions of the maxima are interlaced
in asymptotically equal intervals of i‘1/3, with a spacing of 1.403 units. For
A>Ac(\"), the Duffing equation admits of a unique periodic solution if |~ is

large enough.
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I. Introduction

The Duffing eqﬁation:
y+2a3+y>= T cost , 0,7 >0 ' (1.1

is a classical nonlinear equation: it exhibits a large variety of periodic solu-
tions, not necessarily of the same ﬁeriod as the dr{ving force, and whose number
and appearance changes with the values of the parameters A,[" . These solutions
have been well studied by numerical or approximate analytic methods (see e.g.
Refs.l_7). Knowledge about the periodic solutions of (1.1) is presented in a plot
in the A-—r'v plane (cf. Refs.5_7) of the boundaries of the domains where (1.1)
admits of a certain tgpe of solutions (e.g. with a given period 27 m/n). The
appearance of these plots is increasingly complicgted, as the damping is decreased
(see, e.g. Fig.l of Ref.s). If A 1is large enough, at every fixed |[° , the situation
simplifies: the equation admits of a unique periodic solution. We notice that,
if (1.1) has only one periodic solution y?(t) ;t some 4, {",then yP(t) has period 20
and its Fourier seriés contains only odd harmonicé. Indeed, yPl(t) - - yP(t+5T)
is also a periodic solution of (1.1) and it is, by assumption, identical to yP(t).

Assume the damping A is neither too large, nor too small (at small | , e.g.
0.1 £ A< 0.5) and that we increase | gradually, starting from | = O, where the
equation has the uhique periodic solution ¥p = 0. Acéording to the O -1 plots
of Refs.s_7 (see, e.g. Fig.3 of Ref.6) we meet in this process a sequence of
bifurcation curves from yP(t) either of the saddle - node type : A==A§§)(F’) or
of the flip (odd periodic - simply periodic) type: A = A ép)(f’)._lf A is not

too small, these curves are well separated and their type alternates; e.g. A =

(p)

z&ég)(f‘) intersects the line A = const in two points with abscissas lﬂL SN *
’

)ﬂ(p) and has between them a clear maximum ZS(p) at fﬂ(p); the analogous state-
R,SN SN SN
ment is true for Abép)(r'). When traversing a saddle — node bifurcation curve,

yP(t,f’),can be -cantinued through the left boundary point FL,SN up to R,SN °

J (»)

where it annihilates with an (unstable) solution originating at T’L SN* In a
9

P . - . .
small interval I1f;’¢5;,.[1:;-, the stable solution created at f‘épgu is the
NI ]

unique solution yP(t) of (1.1), When we traverse a flip bifurcation curve, yP(t)
»

L.F to two stable,simply periodic
?

loses its stability and gives rise, for [>I
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solutions of (1.1). If A is small enough, the latter cascade at an increase of [

through period doubling bifurcations to an attracting chaotic motion, presented

5. 1f I” is further increased, the process is rever-

@ o)
sed and yP(t) regains its stability and uniqueness in a small interval [ F;)F);rlﬁpjn

in well-known pictures in Ref.

Numerical evidence suggests that the sequence of bifurcation curves Zlég)(F'),
As(p)(r’) is infinite; the positions f”ég),iqép) of their maxima appear to

F
be equidistant in the variable 1"113 6,11

(Refs. ).

Now, the literature contains no explanation from first principles of this
state of facts; in particular, with.one exception (Ref.lz), there exists no
description of the domain of values in the A:-|" plane where eqn. (1.1) admits
of a unique periodic solution. In Ref.‘z, W. S. Loud shows, using a result of
Cartwright and Littlewood (Ref.j3) that, if an harmonic term +ky is present in
(1.1), then (1.1) has a unique periodic solution at every fixed | , provided A
is large enough (essentially A 7 const-/'); the theorem of Ref.l3 is, however,
not readily extensible to the situation k = O and the limitation on A is weak
at higher [ .

In this paper, we consider the case when both A,I” are large; it turnms
out that the solution of (1.1) can be approximated in a controlled manner in this
range of parameters so that we obtain a nontrivial expression for the halfperiod
(i.e. T—t + Ji ) Poincaré mapping Wi ;a ) pertaining to (1.1). This allows
us both to settle the question of uniqueness and to prove that, indeed, an infinite
sequence of bifurcation curves of alternating types does occur; these are the

1,4-7, ., .
’ ) in an interme~ -

natural continuation of those observed on the computer (Refs,
diate range of values of {' . More precisely, the results are as follows: there

exists in the A -1 plane a curve:

- . - "
A=Ac(r’)=-l-;—3r1nf’ —-313? 1a 1n | +Co+o(-1_%];_t;:'—-) (1.2)

A‘Vhere Co is given in eqn. (8.2) below, so that, if A]>£5c(f“), eqn. (1.1) admits

of a unique periodic solution, provided [ is large enough. The (unique) maxima

Aég)’ Ja) }(.p) of the bifurcation curves Aég)(r ), A lﬁp)(r) interlace and lie

asymptotically on the curve (1.2); their positions fﬂég),iﬁép) are asymptotically_
/3

equidistant in the variable {"l , with a spacing:
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1/3 1/3 1/3 1/3 TH
-1/3 . ) T_p () - (p+1) "7 - (p) i
gt = N r.r P~ 103~ —— ” (1.3)
\qu?in tl " Tdt

In a comparison with numerical observations, the somewhat unexpected result is
the logarithmic increase of the maxima of the bifurcation curves, which has not
yet been noticed, From a theoretical point of view, it has the consequence that
for large [ and A near the curve (1.2), the Poincare map P of (1.1) contracts
phase space indefinitely so that, as far as its periodic points (corresponding
to periodic solutions of (1.1)) are concerned, it is asymptotically equivalent
to a onedimensional mapping; the latter turns out to be simply:
J s ’)( —> [ cos(_)(+,2) ' (mod 231 ) (1.4)
!
which maps the circle S1 into itself, with ﬁ,;Z known functions of | ,A . The
) i

largest part of the paper is devoted to a derivation (and a discussion) of this
limit; once it is established, the statements above on bifurcation curves are
simple consequences.

We recall that a study of the periodic solutions of eqn. (1.1) and of their

12,13
)

bifurcations at large | with A held constant is given in two papers (Refs.
by J. G. Byatt - Smith. This limiting situation requires also extensive numerical

12,1 . . . .
2,13 concerning the asymptotic expansions of special

work. Several results of Refs.
solutions of (l.1) appear also in Sections V, VI of this paper, although obtained
in a different manner.

In many studies, eqn. (l.l) is supplemented by an harmonic term +ky. The
situation k<O leads, for small /7 , A to a chaotic motion that may be understood
to a large extent analytically (see Ref.s, §4.3,5.3). If the coefficient k is
held fixed with increasing [ , it turns out that the description of the limiting
situation considered in this paper is indépendent (to leading order in /" ) of
its precise value. A short discussion of the changes appearing if k # O is given
in the summary.

We introduce next the main notation, together with some comments on the
properties of (1.15 at large [ . Define first:

x=y/TV3  cat-3wgp , e=yr?? /«- s r2/3 (1.5)

so that eqn. (1.1) becomes:




LA

£x + 2 K X + x3 = sin t (1.6)
and [ — means & > 0: Eqn. (1.6) is the form of Duffing's equation used
throughout this paper.

Assume now that A =A(i") is a monotonically increasing function of I" . If,

as ["— oo, * = A/f’2/3>’/«0 » O, we change variables further in (1.6) to:
/ L

z= bx, £ f1R R= lll,u-3 (1.7)
we obtain: / ‘ |
‘{’z‘+zz‘+'/i 23 = sin ¢ (1.8)
As € —2 0, it reduces to:
2z + 2> = sin t (1.9)

It is easy to show that, if I: is bounded, eqn. (1.9) admits of a unique periodic
)

solution which can bé improved by straightforward iteration of (1.8) to a periodic
solutiqn zP(t) of the latter; further, zP(t) is unique (see Sect. IX).
However, if L —0 as ¢ — 0, eqn. (1.6) reduces in this limit to:
x39= sin t | ( (1.10)
with the solution:
x (t) = (sin )'/° (.11
Corrections to xoo(t) cannot be obtained by iterating eqn. (1.6), since the deri-
vatives of xoo(t) at t = O are not finite. We expect nevertheless (1.11) to be a
good approximation to periodic solutions of (1.6) away from t = O. The depertures
of the solutions of (1.6) from (1.11) near t = 0 are obtained by a boundary layer

analysis: let:

¢ = (357 = }‘1/5.1 (1.12)
! /

so that (1.6) become;:
2 6/5
E_ 9% 287 430 W75 e3Py - A2 a3
35 2 Tt O 3

To zeroth order in.f

6/5

, we are interested in that solution of (1.43) which behaves

like tl/3 as T-»-o , so that it matches xoo(t). 1f E//AS/S—é-O as €0 (i.e.
Al Pl/4—»¢» ), this solution is obtained by perturbing that of:
v} 3 .
2 Is + 7 (4 (1.14)
1/4

1f, however, A&/ —> 0 as €50, the appropriate boundary layer

quantities are:
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e = ¢/82, x=£l/8“( , V= /‘/85/8(= sl (1.15)

in tedns of which (1.6) becomes:

) |
ig +27 %’é . 73 e 8 o 238 v -t a8
dt

As £ — 0, the solutions of (1.16) obeying ¥ (T )~ C‘/3

as T-—>-- are oscilla-

tory as T > tee and are damped in a "time" T ~ /Y — = .

We distinguish thus three regimes of (1.6) for large o (1) /-.>/4«-o> 0 as
€= 03 (i) fo< fog and E/f 815 ¢ const as £ 0; (D) p 0, = fi/s >/8
< 7{0 as ¢ - 0. We shall show that situations (i), (ii) lead to unique periodic
solutions of (1.6) for [  1large; the transitioh to nonuniqueness occurs in (iii)
(cf. eqn. (1.2)). Since the latter is the main concern of this paper, we shall

]/44 )Ao as £ — 0

assume throughout (except for Section IX) that “f = A/
and use the notation (1.15). In view of (1.2), we find it convenient to use in

the domain (iii) instead of )~ the variable:
51 '

A
L e L - =.-;'_ - (1.17)
£1n ¢ In |

so that bifurcations occur when k ~ 1 as & — O.

The paper is organizad as follows: in Section II, we give general preparatory
statements on the solutions of (1.6) and on the way they approach éac‘n other.
Section III introduces the inner and outer expansions associated to (1.6); these
are combined and improved to two special, nonoscillatory solutions
XL(C), XR(t) of (1.6), defined for t<0, t » O in turn. These solutions are taken
as references for t<0, t > O and the Poincaré map is defined in terms of the
differences:

v, (©) = x(£) - X (£) , £<0 ; ve(t) = x(£) = X () , t70 (1.18)
In Section IV, we give a precise bound, depending on £ , on the region D(£) of
phase space where i.nvai‘iant sets of the map ,lP may exist. Sections V and VI
establish a controlled approximate expression for /IF (£ ;k). Section VII discusses
the limiting form :)T of P (e ; k) as €20, eqn. (1.4), and Section VIII
the extent to whicﬁ the properties of TJT may be transferred to statements on
(l_I) ( £;k) for small, nonzero £ . In particular, we establish the announced pro-

perties concerning the bifurcation lines of ’U\" and the uniqueness of the solution
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for Lﬁc(l") < A < const « FI/A. Finally, Section IX proves the uniqueness of the

periodic solution in the asymptotic domains (i), (ii) of parameter values. An
informal discussion of the results &s given in Section X,
14,15

Refs contain a more detailed treatment of some items (in particular

of Section IX)

II. General preparation

Lemma 2.1 : There exists a rectangle:

| 5 |
D: Ix|<B, \%V{_z% (2.1)

so that all solution paths (x(t), i(t)) of (1.6) eventually get inside it. The

constants BI’BZ are independent of €,}~ if € and £/f~ are sufficiently small.

1/3

Proof: Assume };/fE = A/l < const, as £— 0 and consider the

{
(Liapunov) function §£>(p;x;t) given by: (p = dx/dt)

& (psx5t) = exp [ -L(p;x;t)] | (2.2)
L (p3x;t) = E(p;x;t) + D(p;x;t) (2.3)
E (p;x;t) = %2 + %4 - x sin t (2.4)
D(p;x;t) = O it p > max[(ixi/ & )2, @) @)

= (- (x//A)‘”) if ipl<(1xl/1&~.)'/2 , XA

=-2c (x//~)”2 if p< —(x/;»)’/z. x> A

- -z oM i p < /0 2 e

= 2 ¢ (\xlC&-)l/Z if p;--(\x\//)‘«)l/2 , X < -A

== el - ax1/p)?) i pr< (mi/m)E, x < -a
1 /

Differentiation of (2.2) and use of (1.6) establishes that, provided ¢ and QCku
are sufficiently small:. (a) 4)-—> 0 as |x|,|pl—»e , uniformly in all directions

and with respect to t, for all t; ‘(b) dqb /dt(p;x;t) >ﬁ$> 0 for all t outside a
rectangle D, : \x\<iA,\p\~<(A[ff)l/2? e.g. for A 7 3; (¢) 49 > 0 outside D,. By

a véll koown theorem (Ref.lé, p.371,ch.VII, §3), there exists under hypotheses (a),
(b),(c) on ‘¥> a rectangle (2.1), containing Dl in its interior, so that all so-

-lution:paths gventually come into it., The parameters of the rectanglé D, eqn.(2.1)

may be inferred from those of (2.1) as follows: let:



$,, = min min P (p3x;t) | (2.6)
t P:XGDDA -

and choose D so that:

{:oz = max max % (psx;t) : 2.7)
: t P,X € 2D

obeys %02 < %ol' One verifies that B133, Bzz 9 satisfy this.

l/3/ A > 1, a function 4’ with properties (a),(b),(c) may be taken . .

I
directly from Ref.]6, p. 377 (with obvious changes), in an example due i:o G. Reuter
(Ref.l7). This ends the proof.

' /3

_ .Comexit 2.1: The boundary line A /l”l. ~ 1 éppearing in the proof of
Lemma 2;1 runs inside the asymptotic domain (ii) of 'the, parameters € ,/‘ of the
Introduction. It plays a role also below.

The following places a bound on the manner _i.n which two solutions 'xo(t),
x(ﬁ) of (1.6) approach each other, once they are in D. For simplicity assume that,
if f«v< AL, eqn. (1.6) admits of Solutions xo(t‘; £)~which stay in D for t-‘>to(éf),
andllobey:

(H1) >There exist a,b?O, independent of € , ‘so that ]xo(t;a ) > a,]dxo(t; €)
/dt ) < b, fér t é[t],tzj , With 04 t <L, < " (mod T),‘ t > to(e) . o

It is easy to obtain such solutions (see Section III). With this, for amy
other x(t), staying in D for t >to(£), we may state:

Lemma 2.2: Assume }«/8 Wz . 4 / r’l,/3 < A and zl K = 1/4 ->0 as €-0.
Then, for £ sufficiently small, there exist constants k, d, independent of £ ,
so that, for t e[tl,tz'] :

max [ |x(t) - x_ ()], €M% | ax/a(e) - ax_fde(e)] < K exp|- ¢ pte - eprel @.®)

Proof: Let C< 1 and:

(2.9)

“e

u(t) = (x() = x,(0) exp LCh(e =€)/ €]
it verifies:

£ u+ 2/« u(l-¢C)+ u[3x§(t) + (c® - 20 /«2/23 + 32 exp[-C/\(t-tl)/ﬂ]xo(t

+ u3 exp[- 2¢ pee - e)fe] =0 ~(2.10)
Consider the Liapunov function: ,
: : ._l.. -2
Lu ‘2(£u+2/xCu) + £ G(u,t) ’ (2.11)

with C=1-Cand:
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W

G(u,t) = [ u' F(u',t) du’ (2.12)
(o]
where uF(u,t) denotes the last three terms of (2.10). The forms F(u,t), G(u,t) are

positive definite for t € [t],t ) ifc <'a2/(8A2). Using (2.10) we obtain:

2
dL

u_ - [ 2 _ £ 26 ) - 2
= z/« ¢ (v?F@u,0) = =% ) =-2kCuE,o (2.13)

2/‘0
It is easy to verify that, if, e.g. C < min (3/4, a?/(8A2))and Q//~ = 1/A is
small enough, then H(u,t) is positive definite for t é[;l,tz). Thus, the solution

~ paths (u,ﬁ) of (2.10) stay contained in the boﬁnded domain:

Lu(t) Lu(tl) : v (2.14)

for t G[ﬁl,tzj. But Lu(ti) = O(EL);’thefefore G(u,t) = 0(1) for,te;[tl,tz] and,

since G(u,t) = u2 Fl(u,t) with Fl strictly positive definite, it follows that

/

u = 0(1) for te;[t],tzj . Further, since ¢ u + Z/k- Cu= O(ZZ1 2), we obtain

1/2

u = 0(1/ £ %) for te Ltl,tzj. Returning to (2.9), we obtain (2.8).
Commenti2.2:-A similar stateﬁent is valid if B 81/2<<'/('< A (BI"]/3<'A < Aiﬁ2/3)
but we shall not need it below. !
Comment 2.3 : With the notatioq‘(}.l7); the Aifference v(t) = x(t) ~ xo(t)
obeys eventually on [;l?tZJ (mod 2Ji ):
Lv(e)) < k ekeEep) . lav/at] < ke 12 gke(et) (2.15)

so that, if k = O(1) and sufficiently small, although {v(t)| —> 0 as g — O, this
may not be true for thé derivatiQes. This may indicate why the asymptotic "line"
k ~ 1 plays a special role.
From Section III up to Sect. VIII we shall only be concerned with the situation

A<crt/é,

1/4)

III. Inner and outer expansions. Existence of some special solutions (A<CIl”

If t lies away from nJl, we may iterate eqn. (1.6) formally, starting with
(1.11); we expect ﬁhat, for small £’,/~_” and|t]> O (mod 3 ) a solution of (1.6)
exists close to the formal expansion (the "outer expansion'):

. . Kk 1
*O x_(t) %}120‘ /\ el x, ® (3.1)

with xoo(t),of'(lfll)’ayg

X, (8) = = 2% (6)/ 3-,;010 ,ete. (3.2)




In general, we may state:

Lemma 3.1: xkl(t) = t:l/3 - 5k/3 - 81/32 aqut2q (3.3)
q

where the sum is uniformly and absolutely convergent on EF +6, -71'*-6] for any 6 >0,

(K,L)

The proof is straightforward by induction. We write in the following X

for (4.1) with the sum restricted to k\<. K, 1<L.

If ALC r'”“, a formal '.'inner" expansion may be obtained from (1.15), (1.16)
as: :
_ 1/8 - 1/8 3q/4
X1, (0) = e O Z,' 7qL( T; V) (3.4)
where the Y 1,(t f) are t:hose solutions- behav1ng in turn 11ke C2q+1/3 ag T ~»—eo
of the equations: |
42
d ﬂz d ' »
2o . 21- 70 + ,23 -z | (3.5)
dzt ° ,
2
d 2

Concerning (3.4), we have the following:
Lemma 3,2: Expansion (3.4) is well defined, i.e. the solutions ”Z?,L(’t)
occurring in it exist and are unique. The asymptotic expansion of the 'zqé'l) as

T -0 1is given by:

_2q+1/3 Y z ~5k/3 - 81/3 .k
(T ~E %zaqu i (3.7
whe']:e:.akl are the .same constants as those of (3.3).
(Q)

The proof is given in Appendix A. We denote xg the sum in (3.4) limited to

q <Q .

Comment 3.l: For T large positive, the solutions of (3.5),(3.6) are oscilla-
tory énd are damped on a T- time scale 1/T >>1, so that there is a marked dif-
ference between the behaviour of the ’Zq‘gt) for T->-» and -+ . This jusﬁifies
the index "L" in (3.4).

With the help of the finite versions of (‘3.1) and (3.4), we set up an

18,19)

approximant to a special solution of (1.6): consider to this end (Refs.

[i&ag(t) B e C IR MCT R (3.8)

" where 0<oﬂ - 'k (t £) is of class Cz, supported on [ Ji/z -a € J and
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) «
X €y =1 - X (569 (3.9)
Now, x,, (t) is not a solution of Duffing's equation on - 3/2<t<0 but is uniformly

(K,L)

very close to a solution, for small 8,/~ + indeed: (i) e (t) verifies (1.6)

(Q)

. - T K N
up to terms of 0((57"8%/‘?’)“-;} +'(/‘/t5/3)'°ri)" i (cf., Lemma 3.1); (ii) x; (t)

verifies (1.16) up to terms of O( 83(Q+l)/4+1/8 Z(2Q+3)/3); (iii) on the interval
[-b,~a]] = s the difference xiqr)(t) - xc(,K’L)(t) is of O EcP), with P = min(K,L,Q);c>¢
this Ais a consequence of the identity of the coefficients a.qu iti the expansions
(3.3),(3.7), as asserted by Lemma 3.2. To express this quantitatively, let:
%(x)-£x+2/cx+ic3~51nt ‘ ' ' (3.10)

denote the action of the "Duffing operator" on functions of class Cz. With the
14,31

- help of the above observations (see Refs. ’”. for calculational details), we can

state:

Lemma 3.3: There exist constants cy s >.0, independent of C,/L , so that

1-

suply(x )(t)l < ¢ € P o (3.11)
~T/2<e< 0O

_with P = min (K,L,Q).

To prove that e-eolution XL(t;K,L,Q;e,/« )y = XL(t' ;£ ') exists, approximated
as close as we wish by xaL(t) for ssall E,/l» , provided only we take P sufficiently

large, we proceed in a standard manner: let r(t) be of class C2 and obeying

r(-% /2) = dr/dt(-7/2) = O, write:

xL(t) = xaL(t) + r(t) (3.12)

and show that the integral equation:

t
v, (t') v,(t) = v, (t)v, (L")
() = - & j 1 2 2 (3 L)+ 3 xa,_rz + £)de  (3.13)
W(v,,v,) a t

=7f2
admits of a solution in a sup - ball (including the first two derivatives) of radius
ECZP, for some c, > 0. In (3.13), v, (t) ,vz(t) are two independent soldtions
of the variational equation to (1.6) around xa‘?(t):
EVe2fV+3g, veo B A
and W is their Wronskian., .

’l‘o establ:.sh the statement on r(t), eqn. (3. 12), we need only a coarse bound

: and then' denvat:.ves.‘We shall need in Section Y‘FI solutmns of

, s:.mlar' quatl.ons, ‘so we make below a more detaxled statement about the:.r behaviour.
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Let to this end in (3.14):
v(t) = w(t) exp[-}g (t + 37/2)] (3.15)
and define, with t,'f of (1.15):
%D("c);_ 3 xiL - rzla)s-‘/l’z 3%2&-1“2 (3.16)

" Further, let w( )(t) be the WKB functions:
~Coi

(w)(t‘ € ) =<I>-”4(z) o0 [J{;l/z(z )ydz'] - (347

sm

e 1/3

where Zo 2> 0 is " chosen so that >0 for Z< —Zo. Since "ZL(Z y~7¢
for largelrl , such a choice of [ is always poséible ‘ifr A < Cr'lM (T< fo).

1/16 =10 3/8

Notlce.)w (t)I~ at t = ~J/2 and ~1 at |tl~€" . Let now v, o(t) be
. - L]

those solutions of (3.14) such that thé corresponding w1 2(‘5) (by (3.15)). obey at

t = -4 /2 the same boundary cond:.tlons as w( )(t) of (3.17). It is easy to
verify (Refs.zo 21) that the wl 2(‘t) are solutions of the 1ntegra1 equations:
o ( ) 1/4 16, o\ . j 12, s o -
w2 (T58) = wpo(eie) + PNy 3R(%) ¢4 Cen sm[zl{a (2 de"fwy (25
i /8 ' N
2¢ xdz' (3.18)

~ with:

. LB 2 ' :
R($) =’%<P‘.3(%§—D) -%-j—z—? 72 ‘ (3.19)
With the help of (3.7), we can establish CP(Z )~ .3T 2/3, R(¢>)~Z‘~8/3; in
these estimates, it is essential that xaL(t) is a smooth function, with bounded
derivatives with respect to T . Care is_required if c% (t) has oscillations .
(sea Ref.M). From (3.18), we can obtain bounds on lw] 2(t;€) - w(w) (z;€)] and
deduce: ’

L@a 3.6: 1If -E-S<Z' < 0, for & sufficiently small, the solutions
wl’z(t ;€) of (3.18) and their derivatives with respect to £ have a uniform limit
as € —> 0,

The straightforward proof and estimates for the convergence are given in
Appendix B. |

Retufning :{ow"to‘ the main stream, i.e. to eqn. (3.13), we notice:

. W(vl“,vz) = 6f3/8 exp[-Z £- (t+-7'/2)] (3.20)
so that we can bound the kernel ;of ,'(3 13) uniformly on [-3/2 OJ by constae-sls.

Smce suplz (xm_ ’(t)l can be made as small as one w1shes, by letting P be large

enough, eqn. (3 I3) is'a contract:.on of a ball of radius  £° 2 into itself, fog 4
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<, sufficiently small. After evaluating the departure of the derivatives of XL(t:)
from those of ‘xaL(t) (see Ref.14 for details) we can state:

Theorem 3.1: Eqn. (1.6) admits of a solution XL(t;K,L,Q; a_‘) uniformly
approximated together-with 'ité first two derivatiygS"bettqr than’._-aczg on: [-151'/2',9_.]'
by xa_‘_.(t), ‘éqg.ﬂ.-’;i(B.B) and which obeys: XL(— /2y = xah(- /2), dXL/dt:(-I/Z) =
dx,, /dt(-U/2).

We turn next to the interval T > 0. We would like to obtain a solution analo- |
gous to X.L(t) for t > 0, by matching the outer expansion (3.1) to a suitable
inner expansion. fz'R('C) of (1.16). The latt_er is not simply the continuation of
"ZL(Z ), eqn. (3.4) (see Commeﬁt 3.1); further, all solutions of (3.5), (3.6)
2Q 1/3

behave like T as T —+- , so that we cannot select unique terms by the
boundary condltlon. Whereas the oscillations of most solutions 7 (T )-die out
in a time T ~T , there exist some for which the amplitude of the oscillations

for <! is less than const‘frﬂ, for any given r > O. Indeed, look for a

solution “Z R(Z) of (3. 5) in the form:

k r+l (r)
7 or( 7°k“f + 17w = 7 (z) +u(z) (3.21)
where the uz k(‘t‘,') are, in turn, the solutions behaving like "C]/3 = 5k/3 of:
°Z
28 ”(oo (3.22)
a? 7 d"
ol 700
—5— * 3700 'ZOI 3 etc. (3.23)

d
Clearly, since the damping terms are absent from (3.22-23), solutions with the
required asymptotic behaviour (and corrections falling 6ff sufficiently rapidly)
are uniquely defined. The function v(T):in (3.21) may be taken as any bounded solu-~

tion (for T>0) of:
2

&y w2t & +3'z§’ v+3«z(”)7~’-'” Ve T3 e k) 2w
az

where k(7T ) ~ ’tl/3—5(r+l)/3 for large T . It is easy to verify that such solutions

exist,for 'f small enough (cf. Lemma 4.3 below).

) W:Lt:h f\.iy;ﬁi‘s‘, ‘the asymptotic behaviour of the 'ZOR(‘C ) is obtained as follows:
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1/3 - 5k/3 - 81/3 : (3.25)

Tok ~ 2;‘ %10 ©
so that, for T >Tys sufficiently large, but independent of & , it is true that

k r+l 1/3-5@:+1)/3
L7 or —Zi "Zok!:' < e +2 ) (3.26)

1+ 6
where fz k L is an L - truncation of the sum in (3.25). If T 2 lllf

,6 >0,

it is easy to show (by Llapunov methods) that “Z (z) - 'z(r)(t M= lu(z)( <
"frﬂ k(z ) (cf. (3.21)), so that we can replace the right hand side of .(3.26)
through the rest after an (r, L) truncation of (3 7) with q = O, ' ' .

In a. stnctly similar manner, we derive solutions "( R(t ) of (3 6) and analo-

_gues, We write then an 1nner expanslon.

(@)

Q) = g8 3q/6 _ _1/8 :
(t) = ¢ Z Tar(®) € MO (3.27)
and an approximant te a solut1on of (1.3)‘ for t>0,4 < CF‘lM as:
x o ® = X e xPo + ¥ @) Vo CG.28)

where )CoR is analogous to l{oL of (3.8), kif )(roR = 1 for 0< tgdi /2. If the
powver % defining the interval [a,b]é where the matching of x, ir® %o is performed
is such that £ % -3/8 > l/f , the relevant asymptotic expansion of 5-1/8x§g)

for the calculation of 3 ‘(x ) is the same as that of & -1/8 (8), cf. eqn. 3.7).

Thus, ‘ (% (x ) ‘3 (x )’, if the truncation numbers Q,K,L are the same. This
situation occurs at high damping (near the line A ~ Cf’]/l‘). If, however,
gd_B/S < l/{ as is the case if, e.g. A~c 1nj', we must take into account

the additional term O( )r—r+l) seqn., (3.26), in the calculation of 2 (XaR)' However,
in this situation, “f"&‘,q, for some q >0, so that. we can state, in analogy to
Lemma 3.3:

Lemma 3.5: Let P = min (Q,K,L), S = min(Q,K,L,r). Then:

sup 1 (x (0 =o¢ £4F® (3.29)
O<tg /2

for some <, > 0; the estimate in brackets is valid if &~ -3/8 <1/7.
We can now establish the existence of a s‘qlution XR(t;Q,K-,L-,r;E,r) of (1.6),

as close uniforinly as we wish (together with its first two derivatives) on [0, /2_]

" to X, (t) (provxded P (S) are large enough) 'J.‘he procedure is the same as the
~one for provmg the exlstence of XL Theorem 3. l. The solutxons vl 2 of (3 14)

= are now chosen o that the correspondmg wl 2 (eqn. (3 15)) obey the same initial
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©

al2. Fhrther, the function CP(Z ),

eqn. (3.16), obtained from 'ZaR(Z) has now oscillations of frequency ~T 13 4na

conditions as the WKB functions (3.19) at t

amplitude ~“{r+l on a time scale l/f ; if r is sufficiently large, the estimates ..
for (3.19) are nevertheless the same as for X 1

Due to the damping factor e at in vl,Z('t)’ we are constrained to choose the
initial conditions for XR(t) (the same as for xaR(t)) at t = 0, rather than at
t = 3 /2, unless the quantity k, eqn. A(l‘.7), is 0(1). vIndeed, the kernel of (3.13)
cannot otherwise be bounded in a useful manner. We can thus only state:

Theorem 3.2: Eqn. (1.6) adm1ts of a solution XR(t,Q K L,r; € /v«) uniformly
approximated, together with its first two derivatives, better than & ZP(S)
[0,5 /2] by ‘xaR(t)', eqn. (3.28) and obe’ying XR(t=O) = xaR(t=O), dXR/dt(t=O) =
dxaR/dt (t=0). » 7

Comment 3.2: Although xaR( 3 /2) == xaL(—:X'./Z), it is not true that XR(JT/Z)

= - XL(-:H/Z)., because of the different choice of initial conditions. The same is

true for the derivatives. We can thus only state that, for some c¢ > O:
cP(S)

x'( 1 /2) +xL(-Jt/2) = A (€) = 0(& ) # 0 (3.30)
ax, d
—Riy2) +—x-'i(-w/2) = A,(8) = =0(eFB)y 4o (3.31)
at dt
Comment 3.3: If k(£), eqn.- (1.17) is 0(1), we can make Al( £) = AZ(C) =0
(cf. Refs'3). Since the quantity P(S) in (3.30),(3.31) is at our disposal, we

may nevertheless keep Al’ A nonzero in the following.
Comment 3.4: Notice, at Z = 0, XR(O) . '/8[20 (T =0) + o)), dx,/dT (¢ =0)
!4 4 0o/4T (£ =0) + o(T ). But: x_(0)~¢'/8
3/4ﬂ

70L(t=0;f), dx /dz (z =0) =

51/8[

d'zoL/d'c (T =0) + O(E Now, 7 ;(Z=0) = 7, (2=0) + o(Y), where

'ZooL is the solution of (3.22) with the boundary condition ZooL( t)~T 1/3 as

T —+-» , It is easy to see that 'Z L(2') = - 'zoo(-z). Since 'Zoo(z =0) ¥ O,
"( /dZ (C -0) # 0, it follows that:

X (T=0) - X (2= 0) = £ 1/8

de i

TT(E=0 - gF (c=0) = ”8AZ $0 (3.33)

A v $0 (3.32)

if £ 18 small enough. For small 'f A‘I- 2 "Z (0) A7 =2 d'Zoo/dz ).

Coment 3 5. . Eqn. Q. 6) admts ‘also of the follow1ng solutions:
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X (8) = = X (e =0), Xp,(t) = - X (e -Jr) (3.34)
defined for J/2<t< W ,3< t<3J/2, in turn. Clearly, )LLz(t) = XL(t - 23 ), etc.
are also solutions.

With this, given a solution x(t) of (1.6), we can define its successive depar-
tures from X.L(t), XR(t), etc, for t >.-J /2:
x(t) = X (t) + v, (¢), -Ji/2< t< Q; = Xp(t) + vp(t), 0 <t< 3 /2 (3.35)

= X (8) + v (8), /2 <t<Ti; =X (€) + v (£),7 << 37/2;etc,

The tlme 2Jl Poincare map TPO associated to (1.6), with initial time t = -7 /2
(mod ZJI ) is then:
TPO f (v (- T /2), dv, /de(-T/2)) —> (v, (37 /2),dv ,/at(3T /2)  (3.36)

A 24 - odd periodic solution of (1.6) gives rise not only to a fixed point of
(’Po’ but alsérof: )

> —_ f_ _-— , =

I (v (=91 /2), dv_/dt(=F/2) —>  (-v, (7/2),~dv, [de( J/2)) (3.37)

L L L1 L1

It is easy to verify that the symmetry x->-x, t-t + Jji of (1.6) implies that

'I?o = PoIP=TP2. Now, with (3.30), (3.34),(3.35):

/2y = - X (o 7 (T 2) = v (T '
v ((TT/2) = = X ((F/2) + X (T/2) + v (T/2) = v (F/2) + A (€) (3.38)
and similarly for the deg,givativas. Thus, the final formal expression for 7!) (€,k):
2 __ 2 ' "

R™ — R” ,which will be made explicit in the next sections is:

’lP : (vL(-3i'_/’2), dv [de(=H /2)) == ( —v (T /2) = A[(€),-dv /dt(F /2)

- A,(£)) (3.39)
IV. On the invariant sets of ?(8 ;r)
The function vL(t), eqn. (3.35), is a solution of:
e Py 2 2 3
5?L+2I~va3vaL+3)LI‘vL+VL =0 : (‘t-l)
and vr obeys a similar equation with index "R". It is convenient to introduce °
the independent “varxables, for t< 0, t >0, in tum. ¢
-Ge
L -1/2 f , -2 f \ \
GL xL(t: )y 3 de° 3 Op=¢ xR(t y (3 ae (4.2)

for a 'C such that (), (T) ¢ 0 for I?Zl > Z’ . For ease of notatlon,
L R

the. index "L" or. "'R" on 9 w111 be dropped if it 13 clear whether t <0 ort>o0.

The aim of thls Sect:.on i8 to prove:
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Theorem 4.1: For £ small enough, the invariant sets of the Poincaré map

?(C /«r), eqn. (3.39), are contained in a disk:
D : |v| + |dv /d6 \2< Ay g3/16+i/2 (4.3)

where A‘M is independent of £ and k(£ ) of (1.17).

A set S is invar'iant if TP('S) = S, Because bifurcations are the main
concern, for which (as will turn out) k(&) = Q(l), we use in the next sections
the notation €kt rather than exp (-/% t)._ The proof of Theorem 4.1 is achieved in
v several steps. Flrst, we notice: |

Lemma 4.1 ~All solutions of (4.1) obey eventually (mod 2% ):

k /4 -1/2 (kW /4

lv (=5/2)l <K€ .V T/ <ke (4.4)

1/4

‘This is simply Lemmh 2.2: let C = 3/4, A—>0 (a<CT '™, £, = /6, t, =

J/2. 1t follows that all invariant sets of P are contained in a disk of
kJi/lo

radius &

Lemma 4,2: Consider a rectangle:

Dot |v -W/2)], lavsae (-a/2)k < ae”  (4.5)
There exist ToL’VB’ independent of &£ , so that all solutibns of (4.1) starting
in Dx at t = =3 /2 obey-at t = —T°L83p:§3,
P '
v, lav/del< Be (4.6)

~ where p = min [T+ 2 )/3, 1/8]

Proof: We use the new vafiable w:
_ w k(t + J3i/2)

which obeys:
2 3

i—;—'+w(l+g)—w2h+%-h2=0 (4.8)
da

where (0 =6L):

k(t+ 21/2) d d
£ « 21
(-xL) xL CX de
3/8 KW+ 2«
Since g~e(t” +&6)we notice g ~1 at t~€g™" ", whereas h ~1 at t~€ » , if
3/8

ku+ 2« £ 3/8, but stays otherwise o(1) down to t = - T, E » T < T . Consider

the energy assoc1ated to (4.8):

4

W2 ' W3 2 :
(1+8)"-§-h+12 S (4.10)
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for which:

2 3 4
dE _w (dg) w_dh w_, dh
a6 2(de) Td0 © 6 "de (4.11)
If t is such that |g) < 1/24 (i.e. t< -C 83/8), it is true that:
tw(e )< V12 ECo) , |dw/de|<\2 E(e) (6.12)
3/8

for -#/2 <t< -C &€

&< seod] |58 {__l B NE + 12 5¢0) n]E2 ] (4.13)

, so that (4.11) implies:

Att=- 0/2, EX EO(A), and we can assume Eo>l. From (4.13) we deduce that,

as long as E(0) > 1:

E <o’ [l | + 41 l} | . (4.14)

if ¢, ToL are chosen so that\h(6 )| < 1/12, for t é'[- -7‘/2,-'1‘01‘5 BPJ. The differen-

tial inequality (4.14) can be integrated to yield, for t > - 3 /2

ECo ) _ g
E(0 ) < ‘ ' (4.15)
1 -6 E(Go)(Ag+ﬁAh)‘

with ag, sh = g(6) - g(0 ), h(6) - h( 9(;) ‘and bo = QL(- 7/2). We can now
choose To e.g. so that Ag(ToL_83p), Ahb(ToL £3p)’ < 1/(12 Eo). Thén (4..15) implies
E(-Toi‘€3p) < 2 E(—Ji/tz) Re'turning to (4.7)7 and using (- XL) ~ )tl-]'/3, we obtain
the statement of the Lemma, \

Notice, we do not yet compare eP in (4.6) with £ in (4.5). Both situations

=T 3p
dvR/d,eRat‘t-T ey,

g;p < €% and gPs £ are possible. We evaluate next v oR

R’
3
Lemma 4.3: If ]vL|, lde/dGLI obey (4.6) at t = - ToL £ p, then:

P
;le ,|dvR/deRl <ce (4.16)
at t = ToR £3p’ for C independent of & (but depending on TOR,B).

Proof:In_eq. (4.1) for vL(t) we rescale variables to:

= /2P v = ePv (4.17)
so that:
2
d’v p-1/2 dv -2p -p 3
——dz zre d6+3(xLe )V+3(XL&:)V +V =0 (4.18)
It is true that, for te[-—'l‘ £3p 0] le& pl< TII{3 R mdependently of £ . The

energy assocuted ‘7;0-(4.18) is:

4

xLa"’) v2 o+ (xLe Py y3+ 34- | (4.19)
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p-1/2

At 6 = —(T°L£3p) e =0, one verifies E(6) < Bl’ independently of &€ ,

if (4.6) holds. Further, for té[-ToL£3p,0] :

1/4

[VI<E /2 : (4.‘20)

as one verifies from (4.19). We derive then from (4.18), (4.19) the differential

inequality:
-p -p 2]
I ] N 3 (X ¢ |+ 2 2 ds X e ") ’ (4.21)
Integration of (4.21) yields:
1/4 M4 1 T13..2/3 1/3 ,
< —_— =
E(s =0) E(6,) + 33 [2 T * T ] 1 (4.22)
with C, independent of € . With (4.19), (4.20) this means
= p = P
v (e=0)| <C,e® , [av /d6 (t=0)] < Cy & (4.23)

for some C2, C3 )>0.VUsing the discontinuity rules (3.32-33), we transfer the

information (4.23) on v. to similar inequalities on v

L R
1v (O)]<]v (0)]+1(XR XL)(t==0)] < C P 4 81/ AZ< C4 £p (4.2&)
dvR v de e p 1/4 - p,l P
Loy <] 20| + | Szt - Xy @] < eP v g sy<cge (4.25)

where we have used the fact that p <1/8.
We can now repeat the reasébning above for the analogue of (4.1) with index

"R" and conclude, similarly to (4.22), that:

ghpm1/2 2/3 O (4.26)

E(6=T ) <C +DTR

oR

with constants Co’D’ T _ independent of £ . Using (4.20), (4.19) and returning

oR
to the variable @ g Ve obtain (4.16). This ends the proof,

. - 3p .
Lemma 4.4 : If v dvR/deR obey (4.16) at t T°R£ , then:

R’
. i

lvg(e= T/D| , \dvp/a 0 (em 7/2)] < u 3P * EAI/2 (4.27)

for a constant M independent of £,

Comment:4.1: If p = (ki + 20¢)/3 < 1/8, then the bound in (4.27) is strictly

smaller than the or1glna1 sxze £. » eqn. (4. S),of the set of 1n1tlal conditions

-—

3
. -Thus, at evcry half penod d increasss by k3 until we reach
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3/16 + kJ/2 .

/\ £ in the (v,, dv. /d ) ) plane, for some A > 0. This is preci -

sely the statement of Theorem 4. l

Comment 4,.2: The statement of Theorem 4.1 (and of Lemma 4.4) is of interest
only if k = 0(1). If k > as € —» 0, it gives qualitatively the same bounds as
Lemma 2.2.

To prove Lemma 4.4, we write, similarly to (4.7), ( GREG):

_ow(e) kt 3p/2 ' o
vR(G) = 73 £ £ (4.28)
| 3R
We verify that, gt t. = _ToR & 4 _ ‘
Ctw(el, !dw/d9| < C (T _p) (4.29)
where the numbering of the constants C begins anew and C (T ) '1‘21/{3 but is

independent of £ . The function w(8 ) obeys:
2 3

4% s w(i+g) +wrh +% K =0 (4.30)
2 1 3 71
de :
with: _ _
’ ckt + 3p/2
R B

and g(0) of (4.9), now with index "R"., The proof of Lemma 4.4 is finished if we

verify that the energy associated to (4.30) is bounded by a constant even at 0 (i /2).

‘ ) .
We cannot, however, make direct use to this end of the argument leading to

Lemma 4.2, The reason is, we cannot make sure we can find a ToR so that the

denominator in (4.15) is bounded from below by a positive constant at 6 =
a

6 (T0R63p). Indeed, if, e.g. p< 1/8, we can only state: E(Q.a)(1 agl+ 41ah]) <

/3. -1/2
(C * CB T oR oR

1/6, for some T

)T and we have no reason why this bound should be less than

oR’
-S
Now, if § is such that 0 < § <3p, it is true that, at t, = £3p . 9] =

8 (r)), (e ) = 0Ce $/2

). It follows that the quantities Ahl = h](e l) -

h ( 8(W/2)), 2 g = g( e, - g( 0(i/2)), which appear in (4.15) may be @de as

small as one wishes, by letting & be small enough. We can thus state:
Le‘mma‘l& 5: 'A‘ssum‘e':'

\w(e )l s law/de (o Dl < c, (4.32)

‘ ~) and C4 mdependent of €. Then, if € is sufficiently
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tw(e (3/2)1, ldw/de (o(T/2)l< C (4.33)

5

for a constant C5 independent of £,

The ?roof is identical to that of Lemma 4.2.

The’proéf of Lemma 4.4 is thus_ fidished if we justify:

Lemma 4.6: The solutions w(® ) of (4.30) map the rectangle (4.29) at 60 =
4] (ToR E 3p) into the interior of a rectangle (4.32) at = G(EBP—S ) with» C,
independent of £ , if & is sufficiently small. A

The proof is displayed in Appendix C.

With Comnment 4.1, the proof of Theorem 4.1 is completed.

V. The left hand side Poincare’tmapping’haL.

In this and the next sections, we derive controlled approximations to the

half period Poincar€ map P , eqn. (3.39). We discuss first the quarter period
P, o
map "
. TS . — L) , .
I : (v, (=71/2), dv_[d0 (-31/2)) — £€7(v_(0), dv./dT(0)) (5.1)
L L L L L
with © ==6L of (4.2) and T of (1.15). Clearly, in view of Theorem 4.1, for the
discussion of uniqueness or of bifurcations, it is enough to restrict the

- domain of/IP to the disk D, eqn. (4.3). We parametrize then:

L T
VL('j/Z) = 83/]6 MLEFEIV cos \})o (5.2)
dv -
& (-F/2) = - g6+ KA A giny (5.3)

The function vL(t) is a solution of (4.1), -=# /2< t< 0. Most of this Section is
devoted to the proof of the following:

Theorem 5.1: Consider the linear equation:

&, @ , .
£ 5 +2}‘—— +3xL vL-O . (5.4)
dt dt

with the initial conditions at t = - /2

v T/2) = Acos(Yy + P, (834016 T EI2

(5.5)
gD = it b (e Ay 10T AR -0
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: (e) = JIB [ a2 18 k(T L, (5.7)
so 24 2
..Ji/). XL
and Co of (4.2). Let further vI; be the solution of (4.1) with initial conditions

(5.2-3) at t = - 91/2 and:

N A T (5.9)

Then, at t = O: _ )
A R (5.9)

and: .
We - (£ =0) -0(8““/2) a 540
g—kﬁ(’;} _;;L-)(t - 0) = o(e¥/? (5.11)

Comment 5.1: This theorem states that we can compute ”PL for v_, de/de (-31— /2)
inside D, eqn. -(4.3); simply by means of the linearized equation (5.4), with a
precision increasiné indefinitely as £ —>0,

Comment 5.2: It is not true that the solution of t(5.’4) approximtes the relevant
one of (4.1) on all of_ (- #/2,0); this happens only on some interval near T= O.

The proof of :Thgqrem 5.1 proceeds via a"rimm_ber of Lemmas, which we display
below. We use the Va;'iable w of (4.7), with o= 3/16 + kJ1/2 (cf. (4.9)):

v = W gk(t+§'/2) g6+ KT/2 ey ey (5.12)
A '} X
X))
According to Lemma 4.2, M <oo exists so that::
|w4(e s ldw/dék M, te[-7/2, “Tg, € 3/8J* L (T;€) (5.13)
The fact that h(® ) in eqn. (4.8) is a small quantity invites the use of averaging
methods (Refs.2,2’23) to estimate w(6 ), dw/d® on IL(t sE):

Lemma 5.1: Let:

w(®) = R(® ) cos(9- e°+‘€(6 )) (5.14)
D0) = - R(8) sin(0 -0 +(6)) (5.15)

with 90 -OL(- 3/2). The following estimates hold:

o
R(0) = A, +o[n(0) i )“'+“f ey aer] (5.16)

‘e(e)- <I> (9 e)+f5——-—de'+‘}' +o[h(o)+g(o)+f(h +g125)1;1§'

')k approach A, \{/ . eqns. (5 2) (5.3) in
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o - = - _7__ 2 2 t . )

P_(65€) =~ g;\so h%(0 ';£)d6 (5.18)
6o

The estimates under the O(¢) sign in (5.16-17) depend on M, eqn. (5.13).

Proof: In eqn. (4.8) we change to polar coordinates R(6), P(6) as in

(5.14-15). Then:

,
: 2.2
g—% = R sin z cos z [g - hR cos z + coszzl (5.19)
2.2
de 2 h'R 2
T = cos z [g - hR cos z + 3~ cos zj (5.20)
with )
z= 6-0_ +¢ | (5.21)

Consider first eqn. (5.19). We perform on R(9) a sequence of transformations

of the averaging type to eliminate successively the terms in h, h2, h3, g, hg,

wh1ch have zero average w1th respect to z; for def1n1teness,k_they read:

IR2 3.2
= - 3 e = R h l - ommma— 3 - -
‘Rl R 3~ cos” z R, R, + =5 3 ( 16 ©°8 2z 48 cos” 2z ) ; (5.22)
3 4 ' :
h™R 3 1 _ 1 2 19 4 1 6 .
R3=R2+ 12 cosz( 2cosz+-2—1-<cosz 5 cos z)
gR’ .
R“ = 33 + % cos 2; , -RS = R4 + ghR ( —-7 cossz - -——112 cos3z ).

Notice, Ri,i=1,2,... is defined in terms of Ri and the original variable R; at

-1
‘each stage, one may imagine that we have solved R =R(Ri_],z;h,g). We also use
dz/de = 1 + d¥ /d® and (5.20). The important occurrence is that, at every step,

the coefficients of h,hz,hB,g,hg are, in turn,-  trigonometric polynomials of z

with zero average. With this, the equation satisfied by R5 is:
dR
a6
An absolute bound on the right hand side of (5.23) is possible because R(8) is

] ) (5.23)

o(h +gh +

bounded on IL( T;£) by M, eqn. (5.13) and the coefficients of the various powers
of R(O) are trigonometric polyno%ials of z. Eqn. (5.23) means:

Ry -A = o S;h“do' . S‘ghzd?e' +8(0) - g(0 )] (5.24)

6.
Wwhere:

‘“AS =R(A,0,,¥,,8) (5.25)

is obtained by let:tmg z,-"‘ﬂ, oo R= =A, 0= 9 ‘in the sequence (5.22). Clearly,

A50—>_A as 8 - 0. The sequence (5 22) can be 1nverted for £ small enough

large enough and ve obt:aln (5 16). In (5 16), the terms of O(h + g) are,
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in principle, known functions of z. However, only estimates are available for
the other terms.

We transform next eqn. (5.20), using (5.19) to eliminate successively terms
in h, h2, g, hg:

°

. 2
=‘F+hRsinz(l--s—£l—-§? H (Pz='(°l+h2R2(-2%' 31n22+-——81n4z+\

L 3 96
i 6r bt B sin 2250 =P hgR sin 2( 3 + 3 sins + L gin® ' '
288 imn 62 ,v3 \fz A sin 22, ‘fl; ‘(3 th sin z( > -+ 3 sin“z + 3 sin 2z ) (5.26)

In contrast to (5.23), the averaged equation for ¥, does contain terms in g and nl:

d “ L
a6 "2 T w "R +o(n’g + v+ [dg/ael) | (5.27)

Integrating (5.27), moving back to ¢ by inverting the steps in (5.26) and using
(5.16) for R(@ ), we obtain (5.17). This ends the proof of Lemma 5.1.
Comment 5.3: We may replace Aso’ ¥, in (5..16), (5.17) by (A, ¥ ) at the
price of adding terms (known in principle) of O(ho+ gO) under the O(- ) sign;
= h(0),g, =8(8 ).
Comment 5.4: It turns out that the terms of’O(hB) under the 0(+ ) sign in

(5.27) have zero average with respect to z. Also, if in (5.27) we replace
hR.z, 3 2
"R = Ry + —5— cos™z % O(h" + g) (5.28)

we obtain additional terms of 0(h3) with zero average. We can perform thus a

further transformation ?5 = 'P4 + 0(h3) to remove them; the'resulting equa;ion

for &es reads then:
d¢
5 _g _ 1 .22 dg
% > -5z h R5+o(h+hg+l 1) . (5.29)

The similarity of the O( < ) terms with those of (5.23) is of use in Theorem 3.2

below.
We state next:

Lemma 5.2: The solution of the ligear equation (5.4) with the boundary

- conditions (5.5-6) is given on IL(C7;£) by: -

5 - (_wj)%% T/ IN6RT/Z L (xy Thee)  (5.30
..XL ‘ o

W(0) =R(b) cos(0-0 +¥) (53D

where:
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—-6(9)=—R(9)31n(9 6, +¢ ) (5.32)
and(cf.eqn.(5.7)):
R(6) = A +o0(g+g) ~ (5.33)
2]
@(o) = ‘?0+J5-(—g—)-d o' +0(g +g) (5.34)
b, = o SI’SO(G) . (5.35)

The proof is done in the same 'way as for Lemma 5.1, with h = 0 (cf.Comment 5.3).
Eqns. (5.30-35) are a slight improvement over the WKB approximation.

From Lemmas 5.1, 5.2, we conclude that, if t € I (T '£): 0(-T%€ 3/2)

1w(0) =%t L[5 - %] =onco) g(8) + ;.,,‘*36“;.5(1,3431. 46" +95f; 46)
' (5.36

Notice, the last term under the O(+) sign may be divergent &s & —>0, if

k is small enough, for finite values of t(€ ). However,

Lemma 5.3: At t “’23/8 -3 , §$=3Kk¥i/16 .
[w (T) -5 (D) - o( gk A/2 + kT /32y (5.37)
du ax JE
l —d—ili(z) -a—.gé(t‘)l=0(£3km/2 'k“"'/az) (5.38)

with u s u of (5.8).

This follows by estimating directly the terms under the O(- ) sign in (5.36)
using the formulae (5.12), (5.30) and the estimate XL(t:) ~ 81/8 - 5/3. With
§<3kN /16, the term in g(®) is dominant in (5.36). Clearly, there is arbi-

trariness in the choice of &

Further, from (5.12), (5.30) and Lemmas 5.1, 5.2, we see that, at T= - TOR:
duy d“L
3] .
“L ’ “Ls dcc » 3T O(E ) (5.39)

with C of (1.15). We introduce thus:

~

~kJ ~
U s U £ (uL,uL) (5.40)
In the following, we estimate the *differences UL( ) - 'iJJL(t), dUL/dt -
dUL/- dT on the T-interval [— E,‘;—‘S,OJ, by a direct comparison of (5.4) and (4.1)

on this interval, using the bounds (5.37-38). The equation satisfied by u is:

2
d7u

2kr3
dz2 +2~[..__+3szth+3'2L l,‘-o | (5.41)

1/8

> whereas UL is a solutl.on of the linear part of
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(5.41) (i.e. of (5.4)). For the comparison, we rewrite (5.41) as an integral
equation, using initial conditions at T=-— € ° and two linearly independent
solutions of (5.4), vl(t; £), vz(t;e ). These latter are chosen in the samé

manner as the two solutions of eqn. (3.14), discussed in Sect. iII, with the
only change X XL . We preserve the gotation LAY of (3.17)-(3.19). Lemma

3.4 is clearly valid. We denote:

kt -k W/2

Vl 2("-‘;5)55 wl’z(t;E)E vl’z(t;fi)é? (5.42)
For |tl<¢g 3/8 - , with ¢ of Lemma 5.3, ekt ~ 1 and, using (3.20):
wwh%);uﬂqu)ux+ouﬁm'gn,’ £>$ (5.43)
Further, from (3.18), (3.17), for 1tl<£3/8 --é
v, (2 sedl< minfcie 6, p] |av, ,laT (es e[ < Eizt/Cur (5.44)
1,2 , , 1,2
with constants C, D, E, F independent of £ .
With this, the solution of (5.41) with initial conditions at T= =€~ is

the solution of: . (4

U(Z)sAV(Z)i-BV(‘L’) J‘(V(z)v( )-V(C)V(Z))g (U kJ B)dl
et » (5.45)

The solution TJL(I) of (5.4), defined in (5.40) may be expressed in terms of
2(t;s) as: (ef. Lemma 5.2)

U (z) = 31/4/\[V (Z)cos(-O +‘t’ ) —V (T )sux(-(—) +<€ )] AV (C)+B Vz(?:)
) (5.46)

Now, concerning (5.45), we may state:

Lemma 5.4: The solution of (5.45) is bounded on [—‘E—S,O], independently
of € .

Proof: For 'Cé[—s— S’_Tok]’ this follows directly from the estimates (5.16),

(5.17). For |T|< T _, we write the integral equation with initial conditioms at

oR
- ToR' Letting:

r(t) = U (z) - Aiv (T) - Biv (T) (5.47)
with AE B, chosen to match the initial donditions , we verify in a standard manner
that the 1ntegra1 equauon has a solutlon r, (’t) in a ball of radius £k'" in

the space of functions continuous on [- T R,OJ .- The solution is unique because

of _the local L:Lpschu:z cont1nu1ty of the integrand with respect to r.

Fmally, we can compare directly (5.45) thhq(S 46). We have:

! BN x{\
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Lemma 5.5:

~ du dU 5
10, -0 @1 ,|—%@© -—L @]  =oe*"} (5.48)

dT de
Clearly, the proof of Lemma 5.5 concludes the proof of Theorem 5.1.
-$ -§
Proof: Expressing A, B in (5.45) in terms of UL(- € ), dUL/dZ (-€ ) and

similarly A ,B. in (5.46), we obtain, using (5.44), (5.37-38), (5.40):

-8

1A - K1 <lavy/ae -5 (- T )1 +1vy- 7% )| av sz - b 1az)(-e75)]

ki /2

= 0(€& ) (5.49)

kdt/2

and, analogously, |B - Bl = o(s ). Then, usinglUL(t)]{M (Lemma 5.4), for

ze [- S 0] and (5.49): o

1/6 H)S Mf at' = o(g X2

w1th G,H constants independent of € . leferentlatlon of (5 45), (5.46) and

IU (0) - U (0)! < const gkt 3/2 f(G]t'l ) (5.50)
subtraction leads to the second estimate in (5.48). This ends the proof.
To summariie, according to Theorem 5.} and using (5.46), the mapping /PL

is given by:

uL(é‘ ;0) = 31/4 k"[v (0;£)cos (-0 +?’ ) - V (0 8) snl(-e +?’ )} + 0( £3k37/2) (5.51a)
d 5.4V, av,
e TOPSRRENN e % —L(0se)cos (-0 +8) - —2(05¢) sin(-0,+8)]+ 0(& 2 (s.51m)
dat dz 47

with (Fo of (5.35). With Lemma 3.4, we can even write Vi(O;O) instead of Vi(E;O)
and, in view of (B.7), the estimates in (5.51) stay unchanged, for small enough k.

Comment 5.5: The quantity 4380(8 ), eqn. (5.7), behaves for small £ like:

g kT i
£
<Pso( )~ {1/3 (k 1n + )2/3 (5.52)
: 3 ,
With a view:to the next sections, we introduce the quantity:
. £ (5.53)
[{o - {l /3 *

If k(g ) 2 (8«77)-1, ({0 = 0(1) as £€—~>0, and {Io increases as the damping decreases.
It will turn out that bifurcations occur if Foz const as £~ 0, For this reason,

it is convenient to take {50 as the second parameter in Pess /‘* ), rather than /“

For small € , one verifies, using (5.53) that:

(t +4) h _ , (5.54)
b{}) [20 e

 Lov clet U & v (z 0), Ul = du /dZ(Z-O) mth Uy, of, (i}fooé-

Lo Lo
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e o A LY e A . .
ULo( Fo, £3A; ‘f’o) » U7 ULO(/]O, £330, \f’o) . Concerning this dependence, we
may state:

L

Theorem 5.2: If O<f?o< FM, the functions U o’ U'0 have any number of
derivatives with respect to A, ‘f’o, which are bounded as functions of & , as

£ — 0. If, in addit:ion,]L >/2 >0, U , U' are differentiable with respect
(e} m Lo’ Lo
to (Zo and the derivative is bounded as £€- 0.

The proéf is given in Appendix D.

Comment 5.6: We write in (5.51), with obvious notation:

Gy o Kino 3KT/2 7l KA A e
P ) =B+ e TP = TR (A s )

(5.55)
From the proof of Theorem 5.2, it follows that the derivatives of "?L are
approximated to O( s 9 by those of TP: , as £€— 0, q>0.
Comment 5.7: All derivatives of ]PL with respect to A s \Fo, {]o are
continuous as € > 0 and are 0( Elf‘” ).
. . . 4 . Y . "P
VI. The right hand side Poincare mapping f R and the complete mapping .
From the discontinuity fofmulae (3.32-33), we obtain:
{
= = - z = T - A
uR(O) uL(Z 0) A*( , duR/d (0) duL/d (8)) 7 (6.1)
We discuss next the mapping:
D —
] . z —_— 3 T .
L (up(0), du /dT (0)) ((F 12), dvy/dT (T/2)) (6.2)
S k3
restricted to a disk of radius O(’£k ‘) around (—A7,—A'7 ) (cf. (5.51)). To
this end, we write, for T > ToR
W kt + 3/16
vR(Q) = ;Rm £ (6.3)
(now G =0 g €dne (4.2)), so that:
2 ‘ 2
e
- -‘3—31 +w(l+g)+w2k(9)-;w3 k9 .o (6.4)
3
vhere: v - gkt + 3/16
k(0) = xi/z (6.5)
The mapping"P

R involves solutions of (6.4) with initial conditions w,dw/d6 = 0(1)
20
a

. By Lemmas é‘-;{),' 4.6 , these solutions are bounded on [eaf‘-’ 907 .




< uniformly with respect to £ .
Lemma 6.1: The solution w( @) of (6.4) is glven on [0, ., eo] by:
w(8) = R(8) cos(0+¢(06)) . (6.6)
(o) = -R(0) sin(6+¢(0)) (6.7
with: (Q =0 (JI/Z))

R(e)=n+o[k<0)+g(e)+f(k+gk)de'J (6.8)
8o

%’(e)=\0 + (e) fg(—"-—dewo{k(ewg(e)+f(k+gk)d9](69)

and: .
=R(O ), ¢ = ‘P(eo),gtfo = «({o - P .g(6,) ' _ (6.10) -
€0 = 274f 2 RZ(Q';R ¢, de’ (6.11)

In (6.8),(6.9), the terms undef‘ the 0(») vanlsh at 9=0 o
The proof is the same as that of Lemma 5.1, with the change h -—>. -k.and the
fact that, in the analogues of (5.23); (_5.29), we int;egrate from O tov Go.
Comment 6.1: The following estimate holds: (using (6.8))

0
7| W2 , -1/3 (o)
‘st 24£ dG +0(T )= ‘P
p- 38

0 Comment 6.2: T}"le essential point in Lennna 6 I is the fact that the integral

/3

(0) = (6 3R) +o('rl ) (6.12:

v(k d0' is unbounded as £ - 03 1ndeed for t)>9(t ), t, > O, independent of ¢ :

a -
703 2 1 {eZq ) 7(—22

YSR(O)M “2 & g3 ) 273 d4=-73 % Tl/3 ram (6.13)

3/16 + kJ:/Z

At G =0 _, o R (9) = O(E Y. Recalhng Theorem 4.7,

(cf. eqn. (4.3)), a convenient form of | R is:

Pa @ ug(0, dug/dz(0) —> R(B ), 6 +P(8) (6.14)
with R, of (6.6-7). Indeed, apart from the small coﬂrrections AI(E-),AZ(E),
eqns.(3.30),(3.31), the right hand side may be directly compared with the initial
values A,  (cf. (5.2),(5.3)).

Now, recalling (5.51), we are in fact interested only in the restriction
of ?o to a disk. of radius .£kj around (-Av‘z,-A"z).rLet R. (6), ‘(’- (€) be the
values of R( 9 ) (o ) correspondmg to the solution of eqn.(6.4) which is such

. that v (0(5)), eqn. (6.3), obeysv (C-O) dv /dt(t'o) = ”8

(-57 A‘7). We

k“‘,‘;jri‘:;expect then that the mapp:.ng ? is g1ven to a f1rst approxlmation by:

- Pe <u (o>. duR/duo)) ~ ® (2, v o(80) + DPS (aA7 “7"%‘0’ AuL/dzm))
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This expectation requires more precision, since both ?00(8) and elements of
the 2 x 2 matrix D(lP;(—A“],—A"] ) diverge as £—> 0 (as a consequence of (6.13)).
In the following, we discuss the approximation (6.15) in more detail.

To this end, we write?gs TPRZO To IP,, to designate the three successive

Rl
trans forn;ations : :
()PDA T

(4p(0),du /AT (0)) —> (up(T =T L) ,du /AT (T p)) —= (R(O, ), ¥ (6, )

I

> (R(Qo), 904' ?(90)) : (6.16)
Clearly::
o
Py = DPp, DI-DTPy, | _ (6.17)
Now, TPRI is given by the evolution of uR(O), duR/d'C (0) under:
d2u . f 3
+ 2 —--+3 +3 u+u =0 (6.18)
dtz, 1z 7R R ‘ZR
with = E—l/ The map P_  is unknown in detail; DW_. is obtained from
Tr = %R y RI » D¥qy ! |
the -values and the derivatives at TOR of two solutions of the first variation
to (6.18): (wi;h initial conditions ( $u,d$u/dz )(x=0) =( 1,0),(0,1))
i—éfg + 2\5 déu + 3(7R+:;“R‘)2'£U =0 o= (6.19)
de e R |

Since the solutions of (6.18) are bounded on bounded T intervals, uniformly in €,
so are those of (6.19). Clearly, det D?:{ = exp (-2 1*T )~ 1.
A2 (9

The transformation T has det DT = - 3 ° Rm('r ), where Rl(TOR) refers to the
solution of (6.18) starting at (_A7’-A'7 ) at T= 0. Since M7'+M/7/ # 0,
(o)
R?(TOR) is nonvanishing and bounded, even as € —» 0, The matrix elements of DT are
also bounded as € — O.

. P . {-1/3 .

Finally, we turn to | R2® €dn. (6.16). Since ?SR(W /2) ~ as £~ 0, it

is convenient to consider first:
~

Pay : (R(OLD, €6, ) —> (RO ), €(6,)) (6.20)
with ‘f’(eo) = f(o of (6.10). Let ?oo(e) be the value corresponding to the
solution of (6.18) starting at (-27,-4'7 ). We denote further by R4y, @),
the (R,¥) values corresponding to this solution and Rgf") - R(f%a a‘), g§°_)=<p(°) 6,-)-

Let g-a"«?«a" be the values of (R,0 ) at 6 ax of the neighboring solutions. Let

further: :

o) = ¥ (o) -¢ (0) o (6.21)
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(?oo =‘P(°)( Go). We can state the following:

Lemma 6,2: (i) The functions Roo(e)’(};oo(s') are continuous at £ = 0;
(ii) The derivatives ’BR/’BRa ‘(G ),’a‘?/’aRa_( 6), etc., are continuous at £= 0,
uniformly on ahy interval [9 ., 8 (E Y, € >0 3 (iii) The elements of
D’P " \0 ) are continuous at £ = 0; (iv) The derivatives ’DPRIE‘P 3Ra (),
ﬁp‘f’/Q((é ?Ra (6), k+1=p >2 are 0( {(2 1:')/3) uniformly in € ; if P = 2,
they are 0( 1n -El? ); (v) The derivatives '?R/S(?o, QF/QFO are continuous .at € =0,
if {zo>(2m> 0, with f;o of (5.53).

‘ The.'proof is _give'r'x in Appendix E, |

. o~~~ -~ )
From Lemma 6.2(ii),(iii) it follows that PRE ’IPRZ ° TO’IP -is given by:

Po(up(0),dup/dT (00) = R (£3,F  (6)) +&" @B (=27 ,-87 )W (0) v /az(0))

¥} -6
4-0(52kJi

) (6.22)
for any 6 > 0. We can now compute TR'(uR(O), duR/dZ (0)). For clarity, we write
in (6.11) ({’SR( ] ;Ra‘»’ (Fa_ ). Then:

Y(Go) ) ({;(60) +?SR(G;R3‘.’ ?-a) - (?oo(g)' + O(Ekj) "’(FSR(Q;R‘(;)’?a(O)) +

*+ P R .Y, >-‘(’ (9 R ,tf (6.23)

The term with 0( ik' )els obtained from (6.22); the last difference may be written:

Beaa(®y) = - 5 ¥ x @) sk"(m 0,©@ +2RE i) 4 o(e ) fag

2u,(0) "L ' L
. 200 (6.24)
7103 £kj g e":Zq .k.n +S w=-1/3
"7 Roolf) }'173(5 ;’27'3' dq> [JRI UL0) + Jpy (0)] *0(e 7

for some s> 0 (see below). In (6.24), U ), U (0) are given in (5.40) and JRI’ 'R2
are the matrix elements in the first row of the 2 x 2 matrix D’IPR(—A‘[,-A‘( ).
The justification of the last equality in (6.24) is as follows: using (6.17), it

is clear that:
I’DR,f('a!.-.);‘;};;uR(oy = Jg,| < const (\’)R/?R (6') = PR/PR_(Q )] +
1 ORGP (0 )-9R/3<( (e )1) | (6.25)

where ’QR/’DR (9 ) is a matrix element of D"P (R(o) (:1 ). Using (E.2) and

(E.7), we can majorize: ‘ .
e o , ’ 0, , 6
(9)’<const ka0 ) k¥ de" < co

9 B 0g-.

-1/4 (6.26)
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A tighter bound is valid for the second term in (6.25). Finally:
[

20 .y kT OR _ 2R ' kW1
ikR(Q)E ——'aR (9) SR SGO) d0 <C‘£. 1nE (6.27)
3 oR
which justifies (6.24). From Appendix E, (eqn. (E.10) ff.) if we set £ =0 in
R (8 ) in (6.22), the leading correction is still 0(2 ), if k, eqn.(1.17)
obeys k< l/7.-n(this is true for the bifurcation region k = 1/8% ).
We can now sumnmarize by placing together (3.39), (5. 51), (6.22), (6. 23) (6.24):

Theorem 6.1: The Poincaré map P s eqn., (3 39) may be written:

,A ——7 Roo(& = Q) + 0(5 ) - ‘('6.28)
Yo > 0+ % +\ooo(£=0).+ (PSR(O ;Roo’?oo) -
2% 51/3[ RI ;;() cos (=6, +¥)
dv
2
- (JRI (£=0) V2(0) +Jp (5-0) ;—;— (0) sm(- +‘Po))

ki +s X- —1/3)

+0( & (6.29)

Indi‘ces "R","L" have been placed on GORE GR( J'—/2’)_, eoL'
Comment 6.3: Eqn. (6.29) makes it plain that changes in the behaviour of
occur if ,’l ~1 as € — 0 (cf. %55 .53)).
There follows a statement on the derivatives of IP with respect to A, ‘k,,/'
Theorem 6.,2: If O0< FO<FM, the mapping “ has derivatives of any order
with respect to A, ‘f’o, wh'ich are bounded as £— 0. It has a derivative with
respect to (l , which is also bounded as £-> 0,if, in addition, O</3 < ﬂ o

Proof: Clearly:

0 0
D'l? =D’P (J () 3 (e)) (6.30)

. 1 ' ' -1/3
with I, = (3% /2 ul0)(6) = 0<T By, 3, = % g/2u' ) (0)= oCF /
Now:
D'F’ = D? D’P (6.31)
and the elements of D? _are 0(8 kA ) (Theorem 5._2). »This‘ shows the bqqt_ldedngss v

of the first derivatives. For the second derivatives, x,y € R2‘

2?(::.)') =D 'IP (D'lP LXe D?PLy) + D'[P D P (x,y) -=oy” -1/3 Zku) o

e

fo(d™V3 k‘) 0(1) (6,32)

‘using Lemma 6,2 ahd‘:,'l‘h‘lé’drem‘s‘.z. The proof fpr .the_higher derivatives is analogous.
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Concerning the evaluation of the derivatives of P with respect to /\-,
Y, we have the following:

Lemma 6.3: Let TPO(A s \Yo; {20) be the ekplicit part of (6.28), (6.29). The
derivatives of 1P with respect to A,‘ﬁ, are given to O(E s), s> 0, by those of
'IP°(JL;'\H,;F.) as € 0, if 0<f < /?M. If also Fo>/;m7 o,’a"?/éfzo is given to
o(t %) by ?2P°/2 (zo

Proof: We write: »

P ol (0,5 @) = co(e3T) + P o (u (0,u! (00 + P plu (0),0/(0))  (6.33)
where CR is a constant (vector) ”WR is lmear in u.L(O),uL(O) and D—P (O 0) = 0.
From Lemma 6.2, IID’I-;"'- (u 0), u'(O))l < const, So t:hat D'P D’P = 0(6 ) Further,
Theorem 5. 2 and CGomment 5.6 1mp1y that the derivatives of ? with respect
to A,‘{’ are given to O( Sq), q >0, by the’ derivatives of ’P ]PL). Now,
for ~O<Fo<{2M, ’PRl(uL’uL'.) is given up to terms of 0(8 ), r >0, by (6.2‘3'-'2‘1',). We
call | ?o tﬁis "essential" part of —? . 1° Thu‘s, the derivatives of I are approxi-
mated to O( & ) s >0, by those of'_PRlo(E TP) But:

PO = clesT) +Ppe (P O (6.34)
which proves our statement (Co is a constant).for the derivatives with respect
to Au\? .

Finally, w /9/2 can be written similarly to (6.33) and, if Q (’ , the
estimates of the hlgher derivatives with respect to (u.L(O),uL(O)) are the same
as those of TPR/'. . The reasoning is otherwise unchanged.

Comment 6.4: We also notice:

det DT (A,Y¥ ) = A
P,(A,Y)

which is the Wronski identity for the variational equation. P, is given by (6.28).

(6.35)

VII. The limit of /iP as £—>0,

We make next the meaning of (6.28-29) more transparent. First, we notice

that fixed or periodic points of W can appear only inside an annulus J4 of

-

radius Ro'°4 and thickness A}:k"‘l , for some A> 0. We perform the following (& -de-

pendent) change of okigin of ‘Y  (recall (5.7, (5.35)):
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~

\FO = \VO * eOL -C}SO(s ;ROO) s Tg;o (7.1)

where we have set A= Roo in (5.7). Then, with an obvious notation, the Y- component

of T_IOTPo T =7 reads:

~

Y= J+0 -0 +P (63R 5¢ )+ ¥ (£5R ) - (7.2)
kT —
£ ~ . _ . ' kir+s ,-1/3
AR _A WB cos( ¥ + B +<}3’so(a,A) %so( £ ,Roo))+ o(¢ ' )
with: : E
dv, 2 dv, 24 1/2
. 3/4 2/3 1 2
A=373 r‘(1/3)( [9g, V " Ir I [JR1V2 +J zdt] ) A0 (7.3)
JV+JdV/d‘c>» o |
tan B = Rl_ 2 R 2 - (7.4)
IpiVi * JpdVy /et |
and B é[—ﬁ/Z, 3"/2] (ox ( 7/2,37/2)) if JRIVI + JR2V2 is positive (negative).
Now, in (7.2): oy
6 () - (8)8-—-&(51n tl dt + (-9 (5) (7.5)
oR \8
-9y .

‘where eoo( £)= eoo( 'to; €£) has a finite limit as & - 0. (The latter is verified
using the approximants (3.8),(3.28) to X » Xp)e
We rewrite (7.2) as: '

& - - . . - T & . A o e - . (
¥ = eesTiast) = flosd) fcos(¥em o (e54) ~$ (£5R, ) (.6)

00
with:
¢ =c (£37) +oce eyl 7.7
;2 (f A R : (7.8)
- where C has a clear meaning and (Z appears in (5.53). We change further variables
to:
=X +c(e5r= sk (7.9)
so that (S_lefllb ¢ 8) = 37 re ads:
X— g A osX +Z(e 550 + 0" I (7.10)
Roo
with: ‘
Jiomc ety + BT o (£34) - g (3R ). 7.11)
~ Let now: .
Dices¥rz e (e30) + B+ (7.12)

,'and J] be the mapp:mg of the unit circle x.nto itself given by:

J )C -2 (2 cos(X+Z) (mod 27) (7.13)

As E-’O the mapp:.ng 3T (g3 F), glven by (7 10) (and (6. 28)) has no
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12 a0y,

limit because of the indefinite increase of 27(2 sA), like £
However, if we }et £ n tend to zero so that /2 = const and 2, ( £n;'f ) =
(mod 2% ), for a given value « , the mapping JNT (en,/?) obviously approaches
J| of (7.13), with J, =« . Thus, the limit of I (£3f.) as €0 with fo =
const is the family :))/ ({3 ;0.) of onedimensional mappings, with 0 <Ji< 2J ( and
A= Roo) .
Comment 7.1 : We can also let (Zo~a 0 as £ — 0; then ’k =0,A= R is the
(trivial) limit of P . |
In the following, we study the Sifurcation structure of Jf_ ,» eqn. (7.13);
in the next Section., we discuss the extent to which the 5ifurcations ofrﬂ>(£:§ﬁ )
may be inferred from those oftﬂ- for small £ . We note that the map (7.13) has
been recently studied (also numerically) in Ref.za. Eqn. (7;13) is different from
the map x =x +T +8B sin 27 x  used to model a nonlinear oscillator with

n+l
a limit cycle (Refs.zs’?'6

): the term linear in X is missing. We shall be con-
cerned here only with the first few bifurcations of JI , which we describe by

elementary methods.

PRI

(i) Lemma 7.1:If (i<1, J hasb a unique fixed point and is a contraction
for allz .

This is obvious.

(ii) At every fixed D, ,7 if we increase (3 , we reach a value (25(2) beyond
which :)T admits of three (or more) fixed points, i.e. undergoes a saddle - node
bifurcation. At (3= FS(Z), the derivative of jl_ at the fixed point Xs is unity,

i.e. the equations:

X, = [Zs cos(X  + 2 ) (mod 29) (7.14)
1 =~ (ls sin( )(s +2) (7.15)
2 2 . - . - .
hold. It follows that FS 1 +)(s 2 1; we have Fs 1 only if ls 0, i.e. only

if ,Z= #/2 (mod 2% ). Otherwise F; > 1.

(iii) We“disclglxss the shépe of the saddle - node bifurcation curves near

Ji= - &2, Let & = 21 +3 /2. From (7.14-15), we deduce:
tan(X_+o) =X = (7.16)

i.e. for small X _,6 :

§R T e
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)(s(c) - - 36)!/3, (7.17)

It follows that:

o (35)
{zs(s) S . (7.18)
i.e. FS(Z) has a cusp at J,= —J /2 (mod 2¥ ).
(iv) If, at the fixed point )(‘F’ it is true that (dJ' /d)L)(XF) = -], the

map J| has a flip bifurcation, if certain transversality conditions are obeyed

(see, e.g. Ref.8,§3.5); the latter are simply ](% +2+#0 ,X; + 2/3 # 0 in our

-case. The analogues of (7.14-15) are:

FF cos(y +2 . . (7.19)
| = (Z sm()( + ) (7.20)
Again, it follows that FF(Z)>1, unless XF =0, i.e. D =0/2 (mod 20 ).

(v) Let now © =2—J/1/2. From (7.19~20) it follows that:

tan( )CF+6) =_IF ‘ : , (7.21)
i.e.
Y er=-sr2+0(s (7.22)
"and
0. N ~ 62
{ZF(G) =1 + r (7.23)

Thus, (g’F(z) has a quadratic minimum at J, =% /2,

(vi) Clearly, the flip bifurcation curves ﬂF(E) are broader than the
saddle node curves {A (2). We can be more precilse about this. At the point
(2 (3 ) of intersection of IQF(T’) with /2 (), eqns. (7.14-15),(7.19~20)
hold for the four unknowns ﬂ Z IXO,)(O. We can assume fl\ <J  (as will be

apparent) From (7.14-15),(7.19-20), it follows that: 1 + ()Co 2 = ] + ()(,:)2

at (ZJO,FO), i.e.

Y2 = XS (moda 27) (7.24)

and, since !{Z\°<JT .u;],\k: <A, Clearly, also:
o cot(X2 + 7)) =X2 (7.25)
cot()(.: + 20 = -)(g ‘ (7.26)

The possxb:.llty ')(o ')(,; is ruled out by (7.15), (7.20), Thus X: = -X; and

2N, e o
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Then, at the intersection points of FF(Z:) with Fs(z):

Yo=23i2 ,X0=%/2 b= @ + W24 Y2 (7.28)
The possibility 3(‘5’ = - 3/2 leads to tan 2 _ = =7 /2 and eqns. (7.15),(7.20)
require J, = - atan J /2, with -%/2 <3 < Nj2, 1f )(‘s’ = J7/2, (7.15),(7.20)
requix.‘e:Z‘,‘J = J + atan 7/2, 77(2.':0 < 3J1/2, It follows that the ratio P of
the widths (measured at the intersection points, in units of f']/3) of [ls(_)j)

and FF(Z) is: _ ‘
A = 2 atan /2 S

o = — 2 . 0.22 (7.29)

J1 + 2 atan /2 _ . ' ' .

(vii) We find next at every J, an intéﬁal of values of (1 , 0< F <{Ee(2'),
i_n which the invariant sets of jT can be completely ﬂdes‘cribed. The argument
avoids the theory of onedimensional mappings of Ref.g, but uses the notion of
Schwarz derivative:
iy

() = —— -%(-:—)2 - (7.30)
9

in the manner of the proof of Theorem 6.3.1, Ref.? or Theorem I1,4.1, Ref.”,
Lemma 7.2: Let /lzu(Z) be the second positive root of the equation:
W(Jﬂ;‘%(l) = feosCf+2) --2 (7.31)
if 7, <0 and the firs;t positive root of (7.31) if 2, 70 (—37<Z<]). Let /ZZsz)
be the second positive root of:
YNRT “B) = feos(p-2) = -a-2 (7.32)

if z, <0 and the first positive root of

W({%;X=—F)={2cos({@-.-z)=ﬁ-2 (7.33)
if 3 V0. Let: |
Be(2) = minlT, Fru@)s f0g0] - (7.34)

Then, if 0<{2 <Fe(Z’), the invariant sets of J consist of at most three fixed
~ points and two pairs, each of period two.

The prc.Jof is displayed in Appendix F.

Cvom.m.evt.uv: 7.2: ‘_E‘qns. (7.51), .(7‘.k32) .als‘o. admlt of a fvirst positive rdot,
(llu-' - , if 2,< 0 in (7.31) and Fld-ﬁ-fz in (7.32)., At these values of

9

F, Jl ,_ald;nit:sb ;V:f“ai superstable fiiied point, at )(, - -2 (i.e. lying on the posi-

tive maxi ""\)',ky--'j' -J , in turn.




)
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o Conment 7,3: The other roots in ﬁ>0 of (7.31-33) correspond to superstable
period two orbits, through the maximum or minimum of :/—/—— (X).

(viii) The set :)T ()C;F;Zﬁ —F/Z)llo)ﬁ] makes up, for JT_/2 < F<3 a full
family of unimodal maps, in the sense of Ref.”. For such a family, there exists
an increasing sequence lof values of (& : F1<.{2 g< eere at which :ITL_o,madmits of
superstable orbits of period 2P, This sequence accumulates to /zc<3)' . For
‘F)F»)/}c’ the motion has no stable periodic orbits (is cﬁaotic) for a 1a;‘ge
set of ‘values of . {l (see Réf.g).

Clearly, the same Qituétibn is expected to hold at neighboring values o»f 2

—

This closes the discussion of the limiting mapping J{ , eqn, (7.13).

VIII. The bifurcations of periodic solutions at large I,, (g€ —>0).

Clearly, the bifurcation structure of J| is periodic as a function of J, ,

at fixed ‘Q . We may take A, as parameters of J| . From (7.12), (7.7),(7.5),

'

we obtain:

Jle
D\~ f" S\sm t\l/3 dt + ﬁ—/—B“-‘ % . pr!/3 (8.1)
) 113 1/8 = /\ _ o )
since 0O and (é = const means A =4 (l") of (1.12) with:
C =-—= In ! 1n(AR )—-—1nf3 (8.2)

o 3N 125% T

The preceding Section tells that, if ' is large, Ja (r ,A) possesses an alter~
nating sequence of saddle - node and odd periodic - simply periodic bifurcation
curves, so that their maxima lie on the line = |, with a spacing equal to W

in the variable .2 , i.e. given by (1.3) in F'I/S. 1f {3< min(FF(Z). {ZS(Z))

(in particular, if /;< ‘1 or if (£—> 0 ag "—==), ﬁ( ;) has a unique fixed
point. We expect that, for | large, the mapping ,):IJ‘ , eqns, (7.10), (6.28) - which
‘is equivalent to . 1) » eqn, (3.39) - admits of: the same bifurcation structure. We

write in the following | ’F for all its equlvalent forms, including JT

To this end. recallmg (7 lO), (7.12), (6.28), we rewrite ? in the form:

ot ok )‘ e (8.3)

X _a,,l{{-‘-’ cos( +2’+§> (£;A) - {: (a R ) +o(e XTI (g
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We keep (L,_Z. as fixed parameters in (8.3),(8.4) and study the transfer
of the invariant sets from JI ([L s V) to ’P(@ 2;€),eqns. (8,3-4) for small €.
Keeping 2 f1xed means we let a sequence 8 tend to zero, with 2 ( g T({l € ))
fixed (mod 25 ).

Comment 8.1: Using Lemma 6.3 and computing explicitly the derivatives of
’P (F Iy ) we conclude that - ()Px /ak)z approaches (’QJI/?)( )y asé€ -90
/

whereas ( 9B /2A); ~ ()( I’»)/R - const~(dJl /dk )(]( 32)/(1n 1/6) for
small €, 0<(@ {1 . Also, 9P, /o) ~’9PA JPA ~ 0(8 ) by Lemma 6.3.

" In the above and in. the. follow1ng we write I = =(P, ,PB ) for the two ‘compo-
nents of IP . (c£.(6.35)).

There now follow a number of simple statements, relating the behaviour of i

with that ofP .

 Lemma 8.1: Let ){‘o be a fixed point (or peribdic with period p) of 37(/{;2;)()
for which '()j)—/?)é #1 (or 2TPRY # 1), 1f 0<{$<FM, then, for £ small er;ough,
’)P(F;z.;g) also has a fixed point Eo’ 520 (orAa;p.eriodic point of period p, in
turn) in 02A<A (cf. eqn. (4.3)):

[R - R (s=0)l=0(z“’7) , ﬂ -)c )=0(as+zk“7') (8.5)

Proof: We use LemmaP 6.3. At each fixed } » 0 B J2A = 0( ss) so that PA-A is,
for each ')( and small £, monotonic in A, in 0<A<AM. The unique root A =A (X 1€ )
of P, —A =0 in this interval is such that |AX ;¢) - Rool = 0( S'kT') and
(oA /9X), = 0(£®), since 2B /OX = 0(£°). substituting this into (8.4),

we obtain using also:

¢ 2K 1
(Pso(g sACkse)) - ?so( £3Ro5) = 0( TII‘B (1n é_ )2/3> (8.6)
that:
|98, PX -ad/oX| =o0(ehH , g0 (8.7)

Thus, for ')( near 1’0 and £ small enough, B, ~-X is monotonical in l and

. —
changes sign. From (8.4), its unique root there, 1{0, obeys (8.5). This ends the
proof.

Lemna 8.2: Assume that the flxed and periodic points of period p (p of

: Jl (F 2) are such that (JI )x' 5‘ 1. Then, if € is smala: enough, they are in

“f:',"one? "'to - one correspondence w1th the fixed and per:.od1c pomts (wu:h period
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less than po) of (I? ({§ ;032 ).

Proof: From Lemma 8.1, if £<co, there exists.aunique root of I - F (or
I- ’]Pp) lying in the closed set [](‘i ~§, Ii +8] x [Roo -C &};JT ’Roo +C 2::5] ’
where li are the fixed points of Ji (or \'Ji—p). Now, I - P tends to I —-J (with
an obvious notation) uniformly as £ - O on 10,20 xlO<'A<AM]. Thus, there exists
a compact set AC,[O,ZI]X[MVAM], coOntaining the complement of the above sets, where
I - P cannot vanish for small 8 . This ends the proof.

From Lemmas 8.1, 8:2, we deduce that, if JT "has a unique fixed point )‘/o’
the mapping'ﬁ) ( .(3;,2,; £ )Aalso has, for smail € , a unique fixed point (Aoa”ko:)
To exclude that, for large p,’?p({? ;3.;€ ) might have other invariant sets
(p >« as £€-0), we state: |

—

Lemma 8,.3: Let 4> 0; if JI has a fixed point 'Xo, such that, for all Dd(ll,

PR

J—I—(l) - ')Lo\< (a -5y X- XOI , there exists. 50(5_), independent of 3, so that,
if £n<£o(<§ ), (I?(@ 323 En) has no other invariant sets in D: IA|<AM apart from
the fixed, attracting point (Aoc’xos) corresponding to')éo by Lemma 8.2,
Proof: From Comment 8.1, it is clear that, if £n<g~4(8)’ appropriately small:
1 By (AX) A [< ¥ a-a_ | +1 X=X (8.8)
;PXQ(AQY) =X < alA-Anl + (1 - 3$/8IX-X_ | (8.9)
for all A,Y € D. We show first that, under successive iterations of P, D is

. : —_ kI ] . —
mapped into a rectangle R, of size (A*AOS] < 4dcC g kI = M, g kI Ab- Xo€l<(l6.u AC/S )+

Ek" = Kl £k‘” . Indeed, under 7P2, D is mapped into a ring M—A’oek 4T C gk .

“if £k37< W/[C(AM + 2% )] , which is further mapped into itself under TI>, if ek“<
1/(4C). NOW, if , Y—XOS '>K] skilz’lpkg(A .X) _'k ' < (] - 5/4) IX_ Xocl , i.e.
X -'Xocl is contracted. 1f |Y-X oth ikﬂ/ﬁ then )th(A-)() l <k, PLUIY

$ <1/2, It is now easy to verxfy IR for p 71 that the rectangle Rp of

Si“ ]A A l<H £pkf.ll koth ::Pky is napped‘ into Rp-'-l if q= ZC(I+A+4A/:),

M, - = qP? T/C, K= P T, 4AC/S , T, = 2K + 204, € gk¥

—

converge to zero if qsk is sufflclently small. This ends the proof.

< l The rectangles

Comment 8.2: We ‘may obv1ously require in Leme 8.3 |4 ()L) -X |<(l s )H’.-X |
: mstead of referr1ng to I « The conclus:.ons:.s the same since ’P may also be

- estx.mated ‘as in (8~8-9) Jﬁ;Th:Ls is of relevance :|.f ‘2 (2)<{I (_2 (Z),cf Leqma 7 2.
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Lemma 8.4: Let ﬁ< e(2), ieqn. (7.34). Assume that, at the fixed points
of Jor :)72, ] j)’c— 11155,)@2)1 - 1|> S8, for some J >0, There exists then £°(S)
so that, if- €,< go(é ), T(/Z;Z; Sn) has no other invariant sets apart from
those corresponding to j[— by Lemma 8.2.

Proof: By Lemma 8.2, if £<£l(§ ), P has the same number of periodic points
of period p € 2 as j/_ » and they approach those of the latter as & -» 0. For
vsimplicity, we assume that :)_l_ has three fixed points )(._, ’ko’ )(+‘. Using the
argument of L:eunha 7.2, there exists S‘i(é_ ), so that, if ')CGDCO+ Sl’ﬁ‘) = I, the
quantity k _ = min'v)—l_z(y,) "XJ/I Y—:Y_F] obeys k <1 - 51, and similarly for I_,
k_, with obvious notations. As in Lemma 8. 3, we verify that a11. points in-I+ x
{lA-A l<C sk gare attracted under N (£) to (A“_',)(_'_,s) and similarly for
I_,A_S,X_L.(Co > C()\.M + 2% )). Thus, we only have to show that the set
2]A-A°£]<Co skﬁ}lek-kyd<£]$ =U, does not contain other invariant sets of P s
except for (Aos’)(oz)’ If £ is small, we can assume I?Bt 12Xt + 82>l,
|2p, /oAl <A in U . 7

Consider then the angle W:IA-A6£]<(§2/2A)UC— )éoe' ,in the (A,)() plane. One
verifies that, if (A,X) ¢ W? then lPX(A;X) —Xoé’> (1 + 52/2)11-](06]. Moreover,
points of W fle zfe mapped in W, if £ is small. Thus, if a point reaches W under
iterates of Tf’,l')( —Yosl increases until it reaches the boundary of U, ,so that therc
are no invariant sets in W (1U; . |

Now, we show that, under iteration of P, every point in U, either reaches

W after a f1n1te number of steps or the sequence thus generated converges to

(Aos’ ')(og). Indeed, all poxnts of U, that are not in W lie inside the rectangle
kf) & _ k7 . ; .

Un-}{A-AoCkCoi )¢ Xot|<(3ACo/ S 2’)5: Jc U,. As in Lemma 8.3, under p iterations

of 1P those points of U, that do not reach W are contained in a rectangle with

- — - r(ﬂ
sides M_g P¥" | 344, spk"/s , with M = q° lc , = C(I + 3A/5,). Clearly, M€

s O as p-uo, if ¢ is mll. Th:.s ends' the proof.

*ﬁ
We turn now to thoee vnlues {2 Z where -ﬁ (f s k) has fixed po:.ntl

for wh:.ch I J’x | is closedto um.ty.

—

Lemma8.5°L§t‘ iS>l Z,’+J1/2] >8> o, [1 /2 >O. For every e >0, there exists

E (e,S) 'so that, 1f 2‘ < €40 the set of theee equat:l.ons. ?((18,2 WA l]( £ ) =
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(AX ), det (I - D )( (zs,z,x,)z j£) = 0 admits of 2 unique solution ﬁs(z;m,
’)( (2 8),A (J;&), differentiable as a function of 2 and departing from
(3 ), X s(Z), R by less than e. -

Proof: First, if IZ"'J' /121> 820,12 2 /912([1 5 )l IDJI/BF({{ ' s X )l
> S > 0 (from (7 14-15)). With this, the statement follows by 31mp1y solving the
set of equations mentioned above in terms of A, F )( in turn, in the manner of
Lemma 8.1. Intervals of monotonicity in A, /&,)( in turn exist,for l)( ¥ (Z)l
sufficiently small and A F close to R (g (2) since, by Lemma 6.3, we verlfy -
that ’DPXIB)(. 22 Py /2 12 ?PX/B(J ’9 Py /9/131 approach as € —> 0 the correspon—
ding derivatives of J) ; thus, for ¢ small, the relevant quantities are certainly
nonvanishing.

As in Lemmas 8.4, 8.5, wé show that KIP has no qthér invariant sets in a
neighbourhood of AS(Z;i ), 15(2;5 ).

Lemma 8.6: At ever); 2,20-§0]%+7/21>8 > 0. and ¢ small, there exists
L of (B (500, A58, X (s s 0 AUp-p, (< A,

l:Z)A--As] <C, Ekl} {Q’— X f<3},w1th A, B, C, independent of ¢ and having the

a neighbourhood V = U x U

property that: if [l< (15" l%! conta1ns no 1nvar1ant sets of 7({2 32,38 ) if /4 F.s
the limit set cons:.sts. of precisely two points; if F {ls s, of (A X ) alone.
Proof: This is done most easily using the center manifold theorem (Ref.z_7
p.28) for the map ?( F A Cn) at fixed ), at (ﬁ s; AS, )(s). Let A', ¥'
be new coordinates, related linearly to A-As,)(-ks so that the linear part of
(P( {Zs) is diagonal. There exists then a neighbourhood V of ((is,z\s, )(s) and a
function A' = u({? ! BL ') whose graph is contained in V, such t‘hat:(i) the set
;{ {g A" = u({l XN, X 3 is invariant under P and (ii) all points in V approach
M under I (see Ref.? ) (F {1 /3)
The magnitude of v is independent of £ , since the eigenvalues of D'P that =

»
are different from unity stay away from the unit circle (they are o( z; ))(see

Ref 2 ) Now, according to the center manifold theorem, all invariant sets of 7’

are contained in the slices (L- const of the set M. The action of ? on M is

' given by:

)C )( +a((l {2)-bk' +x(F ,a,}lk) | ' - (8:10)




-

where a,b # O for small & (because 92y/9X2 # 0, 937/9f3 # 0 and u( {Z ',')( 'Y = 0(¢ IJ)

as one may verify), and X(0,0) = DX(0,0) = 0, X = o( I{! -IBSI + X'z). The onedimensional
map (8.10) is the standard form of a saddle - node bifurcation and, if the neigh-
bourhood V is suitably restricted, the statements of the Theorem may be directly
verified (see also Refs.28’29).

For the flip bifurcations we _have in strict analogy:

Lemma 8.7: For any e >0, there exists So(e), so that, at everyZ , for £<£o(re),
the set of equations P ((lF,Z ’AF’XF’ sn) = (AF,XF), det( I + DIP )( [?F,)L' , AF,
;ZF

ferentiable with respect to _J. and departing from = - {KF(Z), Roo,)CF(Z) by less

» £) = 0 admits of a unique soltit_ion {ZF(.Z : E_n)"AF(z ;8n),)CF(Z; E,n), dif-

than e 's (cf. eqns.(7.l9-20))». At every fixed €n < so(e), there exists a neighbour-
hood V of FF(Z;%\),AF(X 5 8h),)(F(Z ; EQ so that: .(i) if F < FF(Z';E,,), the limit
set of I in V consists of one fixed point; (ii) if /2>/?F(Z. ; £,), the limit set
consists of one fixed point and one stable orbit of period two.'
- The proof is the same as for Lemmas 8.6-7.For a related detailed discussion,
" see Refs.20929,
The analysis of the deformation of the cusp in FS(Z) at J,= -7Ji /2 appears to
be more difficult. We can only state the (rather obv'ious):
Lemma 8.8: If £,0+5 /2, ﬂ - 1, A are sufficiently small, I ' s ALk LE)
has either three or one fixed point in {i/\ - Rool < Co Sk;} X{&RA} .
Proof: At each F,Z »€ we can solve P, =A, for every X . The solution is
A= Roo + 'zk7 u(ﬁ—l,z +X7 /2,5 ;¥ ). The function u has derivatives with respect
to'k and (3 , bounded as £ > 0 (Lemma 6.3). Substituting in Px—')(=0, we obtain an
equation:
c(k;{% ;833) = Px(’@,z,u(z,z,e,)m,k,c )-X =0 (8.11)
Now,G tends with all its relevant derivatives as £-> 0 to the corresponding values
. .

of JI( 2 )() -X , since the derlvatlves of _/\. are 0( ¢ . ). But, near J,= -3 /2:

JI (f P) Y )X = (T+T/2) - —)c3 'X(F- l) + o(lZ+—l+lk(f-l)l+n£)12)

In partlcular, for small £, G/aXBf 0, for I)LI <A. Further, farqf- 1) 2+% /2]

' _snau (JI )()(X-A)>o (Jl -)( )(k =-A)< 0, and the same is true for G(A) G(~A). By

Rolle 8" theorem, 1t: follows that there are at most three and at least one root
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of G on {X|<A. By changing F— 1, we can vary the number of roots from one to three
and meet on the way at least one saddle - node bifurcation.

We can summarize this Section in:

Theorem 8.1: If ﬂ /2 (2) -6 ,6 >0, the invariant sets of the (half period)
Poincaré mapping il (/2 D 3A3X ;€)Y of Duffing's equation consist, for £ sufficient-
ly small, of fixed points and periodic points of period two only - with the pos-
sible exception of a small neighbourhood, vanishing as £-> 0, of X = O,F =1,A-= ?cm

2= -7 /2, These invariant points are_in one — to - one correspondence with those
of JJ (F 2 )C), eqn. (7. 13) and approach the latter as £-> 0. The bifurcation
lines (& G €), {2 (2 ;£) approach those of J/ as £— 0. We recall A< CF’IM

This is, in fact, the main conclusion of this paper.

Clearly, we expect the transition te chaotic motion present in DT(F 320)
when (L increases through Fc near = =¥ /2 , to occur also in ?, for small £ .
This is, in fact, the contents of a general theorem of van Strien (Ref.so).

Comment 8.4: Theorem 8.1 establishes in particular the uniqueness of the

periodic solutions of Duffing's equation for C$“1/4>

A Ac(r’) +6 , for any
& >0 (cf. Eqn. (.1.2)), if [’ is only sufficiently large. Indeed, at no stage
did we impose the restriction k(€ ) = 0(}) as £ — 0. If k(£ )= as E—>0,/3~—>0
and the limiting form of " is A= Roo’ X = 0. The upper bound on A 1is due

to the boundary layer structure used in deriving uniform approximations to

solutions of (1.6) (cf. Sect. I, equns. (1.7)ff.).

IX. Uniqueness of periodic solutions at high &,

Although there is intuitively no doubt that uniqueness will persist even if

1/4

A>cr , we shall give a short proof of this below, for the sake of a clear

conscience. The method of proof has bedn suggested by a referee of a previous
‘(mcomplete) verslon of this paper (Ref. 4). In Ref.”", uniqueness at high A
was established in a more complicated manner, which also justified the validity

of apprexiﬁan;s like (3.8) to the periodic solutions in question. In the following,

‘this latter topic is left out.




r-l/4 r.2/3

> We assume first C <A < B and use the variable T of (1.12). B

Liapunov methods, we establish first a uniform bound on the solutions of (1.6)

for t large enough. Let to this end v(t) = x(t) - (sin t)]/3, so that:
EV+2 o ¥+ 3V (sin 023 4 33?2 Gin )3 + ¥ = heo) 9.1)
where h(t) = 0O( t_2/3), h(t) = 0(/@ t—5/3), if {1 > b/-3/5

1/4

Lemma 9.1 : If BF'2/3 >4> c¢cr , every solution x(t) of (1.6) obeys

eventuaily: (B small enough)

MO K/\~l_/5, i&(c)1<ﬂx/"2/5 (9.2)

3/5 (mod 7 ).

for t < - b/‘
~1/3

Proof: Assume first 8//~ <D (A>F ). With v(t) = v(t) 'ekp[-C(t-to)//‘]

Cc= k/« , 0 £ £2/5, and “a+ Liapunov function similar to (2.11), we establish,

3/2 . ey s . 32

for t < -b }‘ the differential inequality

! dL‘-;
w <@y

where we have used | ¢V + 2/« (1 -¢ S//-2) v | <(2L )

1/2 h(t) exp[C(t - to)/}*—] -(9.3)

1~/2. Integrating (9.3) and

using Lfr(to) = 0( ) (cf. Lemma 2.1) L(t)-L— exp[-2C(t-t )/}n] , we obtain that

Leey /2

= 0(/~ /t ) after a time interval of O( ij 6 ), 670, starting at t0< 0.
From:

av+2}«(l+C€//~)v 0(}« (9.4)
we deduce v = 0O }« /{ )a;‘.ter a time interval of O((€ //‘*) ),6>O, for
t< -b/«B“ /2. 1(: follows that 923G/ v = O(}« : and from the differential

equation we obtain v = 0( /4"“ ) ;s for t < - /43’< /2. With o« =.2/5,.we obtain

the statement (9.2).

If ,‘ /e < Bl’ we proceed as above, wu:h vey exp[— C/s(t-t )/e}

Comment 9 '1: The proof above also estabhshes bounds oniv(t)l ,|v(t)l on

Tt <t< brs /2

» by choosing C = kr y 0% K 2/5.
Lemma 9.2: If h((-'c ), ldz/d't(-'t yl<c, then Yl(’c)l,ld'l/dtkb for'
T ¢ (-T_+§ ,T); §may be made arbitrarily small, for z//«s’ > small enough
(g of (112)). o
, g_:_:ggf_;-\ We use eqn. (l 13) "and wnte f('c r) fo:;he exght hand side; \f(t /-)I
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L v )2 LA
L—z(vdz+2'z +4'Z (9.5)
shows that L(T )<const(T ) for lti<T . It follows that l'sz,ld'z /dz|<D after
a time interval of O(€ //« 8/5
~2/3 1/4 . .
Lemma 9.3: If B >A 7 Cl” , every solution x(t) of (1.6) which obeys

3/5 1/5 -2/5

ix(T Y <o <to/«3’5)\< o}
| lv( 6] < Kf AV(E)] < K (9.6)

obeys at t = t,, a< t]<3T‘-a:

The proof is the same as for Lemma 9.1,
Comment 9.2: According to Lemmas 2.1, 9.1-3, the'rectangle'ﬁ:lv(tx 4 Cl’
]G(t)l( C2 6—1(2 at t = - /2 is ﬁapped by the solutions of (1.6) into the
— . ~
rectangle (9.6) at t = J /2, which is strictly contained in -D. Thus, the half
period Poincaré map has at least one fixed point, given by an odd periodic solution
xo(t).
Consider now the difference between two solutions xf,xo of (1.6): u = xi - ox:
5‘J+2/«ﬁ+3w2u=0 - (9.7)
s, 2 2 ‘
w1th_w (x] + xlx0 + xo)/3.

Lemma 9.4: Let:
2

* 2
v ¢ - £
Llu, 4, t) = {eB 2 2pal Z80/20) ", 0 (5.7 40 ) (9.8)
-3/5 . . ) _ e . . 3/5
If x = C/~ » L(u,u,t) is strictly positive definite in u, u for t < -d/~

and, if u, u .are solutions of (9.7):
L(u,4,t) < L(t) exp[ -2« (t - to)] . (9.9)
for t< - drB/S
Proof: We write u = u exp[- «(t - to)J « Then, L(u,ﬁ,t) = .I‘.(ﬁ,i‘i,t)exp[-Z’((t-to)] .

From the differential equation for u, we verify di/dt» < 0 if t< - dr 3/5. To

1/5 if t< -~ d/»3/5, as shown in Lemma 9.1,

this end, we use |wzl>C’-2/5 kC//«
This ends the proof.

From (9.8),(9.9), we deduce: .

| eu # 2/« u(1 -e«/z/. M < (2L(t )-)”2 exp[~«(t - td)] - (9.10)

From (9.10), we conclude that, after a time £/4 < 1/« , starting at t,:

Sy
exp[-"( (t -t )J 9.11)

Iru(t) l < C

for t < -d /- . We;can uge t:he d1fferent1a1 equatxon (9.7) to establish a bound

on’ lu(t)l . usmg (9 1) A
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Since, by Lemma 2.1, L(t,) = o(¢e +I¢2), we see thatju(t)], |du/dt|may be made as
/5

small as one wishes at t~ -~ d}~3 , provided h < B is small enough.
i

Lemma 9.5: |u(T )|, ldu/de (Z )[< consc]u(-zo)| Jau/de (- 7))l €9.13)

The proof is obtained from Gronwall's inequality applied to:
T
. =2(@=T") /vy
-1
u(Z) = A+ B exp[- %(t+zo)] - J.r‘e 7 3w2(z') u(z')az' (9.14)

vhere " V=g /58/5_, B=0(V), W= wf"’s.

ting the reasoning of Lemma 9.4 for t >0, we deduce that L(Ti'/2)<C(/"~)L(-37/2), with
1/3 '

C(/‘)-%O as}*-’O. Now, from Lemma 9.~l,hw(t)=(sin t) + O(,‘),(cf. Comment 9.1) so
i

that ClL(—3/2)< L(“/2)<C2L(-37/2)>, with Cl,C2~1. It follows that the half period

Poincare map is, for j small enough, a contraction in the norm L(u,u,~1/2). Thus:

Theorem 9.1: If Bl"2/3>A > D_lrl/[‘, B, D sufficiently small, eqn. (1.6)

admits of a unique (odd) periodic solution'xo(t) for I large enough.

203,

We turn next to the regime A > B ; we use eqns. (1.8),(1.9), with the.

variables (1.7). Qualitativély, if & < Bf'_2/3,‘ with B small, then a motion -

/3

starting with x(0) = a# O , x(0) = 0 gets close to (sin t)l within a half

period of the external force (if [ is large enough , cf. Lemma 9.1). If A is

1/3
a

larger, then :(a) the limiting motion is no longer close to (sin t) nd

(b) the approach to the periodic solution may extend over many 2Ji periods.
We shall only sketch the proof of uniqueness, since it is essentially

14,31

the same as that of Theorems 3.1, 3.2. Details are given in Refs. . First,

we have:

2/3, eqn. (1.8) admits of a (2% - odd) periodic

Lemma 9.6: If A > B{"
solution zP(t), which departs from
(n) - - =2 ’ —-n
z, (t) zo(t) + £ zl(t) + & zz(t) teoeot £ zn(t) (9.15)
uniformly by 0(/« € n+l); zo(t) is the unique periodic solution of (1.9) and
zi(t) are obtained by formal iteration of (1.8).
. ' v . % (n) - —n+l
The proof is done by Newton s method, noting that (za (t)) = 0(/-1 €0
(cf. (3.10)) ‘and using two solutions of the variational equation to (1.8)
around zf‘n) (t). Estimates of these solutions are obtained by WKB methods (see
Tl

. For uniqueness, we show:
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Lemma 9.7: The difference u(t) = z(t) - zp (t) obeys |u(t)|<C exp]- l(t-t )J
with X= k/« , k sufficiently small, provided \u(t )l,[u(t )] are small enough.

This is proved by transforming to an integral equatlon and investigating the
conditions for contraction.

To ensure that.to exists, with the properties of Lemma 9.7, we prove, by
Liapunov function methods:

Lemma 9.8: There exists a time to, so that 1u(t°)\ = 0(25).

It turns out (see Refs.14;31), that this is sufficient.to state:
Theorem 9.2:Eqn. (1.6) admits of a unique solution if A7 Bl"2/3, for I

large enough.

This closes the discussion of the uniqueness problem at high o

X, Summary

The above establishes_the existencg of an infinite sequence of bifurcation
curves alternatively of thg saddle - node and odd - 230 simply periodic type
for large [",A~k 1ln!" in the i"- A plane of the Duffing equation (1.1). With
Theorem 8.1, this is even the complete picture of bifurcations and invariant sets
of the (half periéd) Poincaré map if the damping‘is large enough. If A 7 Cf"lla,
the situation is simple and described in Theorems 9.1, 9.2. The exposition has
the drawback that much detail is present, part of which is inessential to the
appearance of bifurcations and chaos.

Indeed, some of the "kinematical" complications, with two special solutions
XL’XR of eqn. (1.6) (cf. Sect.III), boundary layers, etc. may be seen in pure
form in the linear equation: '

£ X% + 2/~x +x= (31n t:)]/3 . (10.1)
Eqn. (10 1) has only one periodic solutlon for a11 £./L . If |t}>0, 1t is

close to the outer expan31on associated to (40.!), for small 8,/~ . This

expansxon is obtazned by 1terat1ng (40.1):

X ' - (sm ‘t) / (2/~/3) (sm t) / cos t + 0(¢ +/~ ) (16.2)

(Olltv
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The terms of the expansion diverge as t—->0; for small |t|, we match it to a boundary
layer correction. Changing variables in (10.1) to:
1/6 e'l?z ©(10.3)

x=¢'"% S, t =

we obtain

. 1/2__.1/3 7/3

From (10.4), we candarive a left and a right hand inner expansion: the left
hand expansion is made up of solutions of (10.4) (decomposed into coefficients
qf_powers of £ ) behaving e.g. like XLéA'Zl/3 as T-—-» , etc.; the right hand
‘expansion is obtained as in edns. (3.21) ff., Sect. I1I, These éxpapsions are

improved to left and right hand solutionsrxL, Xp of (10.4) starting from

approximants, e.g.:

ORI NORSILE (Q))( (©) (10.5)
as in (3.8). The differences:
_ -1/6 de dx
ax =0 @ - xon,  axt =L@ -2 @) 0.6
dt dt

have finite limits, not both vanishing, as €-> 0. The periodic solution xP(t)
of (10.1) is obtained by superimposing on X s Xp suitable damped>oscillations,
i.e. solutions of:

&'\}+2/«{z+v=o | (10.7)
We call vL(t), vR(t) tﬁe solutions of (10.7) which are such that:

xp(0) = x () + v (£), <0 , x(t) = x(t) + vp(t) , £>0 (10.8)

To obtain the magnitude of VL(t), vR(t), we notice that, if \le<8]/6 at t = 0,

1/6 5kT'/z

then v (37/2)e_£ , if f= k€ Inl/e , k= 0(1); also, (dy /dii)(37/2)-v

‘/6 kﬁ72 .Thus, the half period Poincar€ map sends domalns of size ¢ ,s>l/6 at
t=-%/2 into a domain of size e® s+ka around a point with coordinates (VR,dv A )~

1/6+k¥i/:
eV 64K/ 2 at t =J3/2. In pertx.cuhr, the fxxed point has coordinates vRadV /dt~e /

For small €, )‘~ the uniqueness: of the fixed point may also be interpreted

.as an (asymptotic) "loss of memory' of the (half;perlod)HPo1ncare map about. the

1/6 + k¥ /2,2

initial phase \Po- in a disk (v \2 ﬂdvR/d'tlz, <c( € ) at t =-N/2

R
(cf. eqn.(4.3)). Indeed, the‘initial conditions for v (t),' eqn. (10.8) at t = 0
T co KV
are : v (0) = e’/G(Ax + o(: )),»dvR/d‘C 0) = el/G(A x' + 0(2 7)) and the

‘knowledge ‘about. ‘f .is contalned in‘the O(EZk%,)iterms. Now, the phase Y. of the
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l/6*1('"/2) is stable against

solution at t = /2 (measured in a disk of radius ¢
small displacements of the inigial values at t = 0. Thus, its sensitivity to ‘V;
vanishes as € —» 0 and the coordinates of the fixed point are fixed merely by
aX, 4X', (eqn. (10.6))

This is precisely what happens also for the Duffing equation if the damping
is high enough. However, the stability of the phase at t =% /2 with respect to
small changes of the initial éoﬁditions at t = 0‘ceases to hold if the damping

is small enough. To describe the mechanism through which this occurs, consider

the nonlinear analogue of (10.7) appearing in the Duffing equation:( 8= GR of eqn.

(4.2)): ./
2~ 1/8 o~ ~
€
d‘;+2f(t),$’5+w(1+g)+w2k 31‘3—=o (10.9)
de xR :
. (d . ~ - kt ~ -kt ~ . .
with )} of (1.15), w=w € , k=ke¢ of (6.4),(6.5), g is a correction to

g of (6.4). If T}=€ = 0, the (almost) harmonic oscillation described by the

1/4

linear part of (10.9) acquires an additional phase const- R. o , where R is

-3/8

the amplitude of the oscillation. In the variable .8 ,'En»e ; although negli-

gible for large 6 , this perturbation is not integrable and leads to sizable

l/4) for large 6 . If f: ¢ are finite (but 1 =0 as £ -»0), the

. . . . -Tz . -3/8 .
amplitude R decreases with time like e , with T = t¢ / ; 1t turns out that

effects (~ O

the additional phase no longer increases indefinitely, but rather levels off at
a value T“—l/a when ‘t“/f_]; it is still roughly proportional to the square of
the amplitude R at some finite value of 0 .

Now, if 7 = O, no matter how small the extension of the disk of initial
conditions in the (uR, duR/dzf) plane at T= 0 (ghe notation of (6.1)), it
generates trajectories of (10.9) that, although posseésing almost the same
amplitude, reach macroscopically different phases, if we only wait long enough in 9.
1f €40 ($-# 0), the extension of the image at t = 0 of the disk D with radius

- »
€3/l64£kJ'/2 in the v, de/dQ plane (cf. eqn. (4.3)) of initial conditions

Tl s 3 3
at t = -Ji /2 is itself ~ Pl

It follows that changes within the disk D obtained by varying the phase 9’0

may lead to slzableveffects of the phase at t -.n/2 (1n the disk of radius

3/16 £k.u /2.

) f.
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Ekﬁ
¥373 1 (10.10)
If this is true, we expect that, even as £— 0, the Poincare map no longer loses
memory of the initial phase at t = -7 /2, but acquires a nontrivial form. This

is the mapping '37', eqn. (7.13), which does display bifurcations and chaotic
behaviour.

Finally, we indicate roughly why‘the inclusiop of a linear term ky in eqn.
(1.1) is of no importance for the pattern of bifurcations at high " and O » pro—
vided k is independent of both. First, the change of variables (1.5) 1eads‘fo:

;3;+2,«5c+x3 +ek x = sin t - -(io‘.n)"
In ﬁhe outer expansion associated to (10.11), the terms .~ 4 - and m;/~ are
unchangéd‘if €0ku¢ 0 as £ ~0, In the inner expansion with the variables (1.15),

the harmonic term does not occur in the leading equation (3.5) but only modifies

(3.6) to:

2
™y d 3
~ : T ) .
‘-——2—] + 27 __'ZI_ + (3’23 + k) ’Z] =" (10.12)
dt dz v
Since z-tl/3, the leading terms in the asymptotic behaviour of the solution

are not affected by k. Thus, XR’ XL are modified with respect to the k = 0
situation only through terms whose relative weight vanishes as ¢-0, if the
matching in (3.8) is performed at t~€£" ,0< = < 3/8,

The equations for v (cf. (4.1), (6.18)), which contain the nonlinear -

LV

R

effects responsible for bifurcations are changed , e.g. to:

e . 2 2 3
;,VR+21,‘~ vR+ (3 XR+£k) vR-i-E)XR vR+vR 0 (10.13)
In the versions (4.8), (6.4) of these equations, the harmonic termleads to the

3/49-1/2)’

addition to the function g(©) in the linear part of terms of O( &

1/

whose integrals over 8- intervals of o(e 2) vanish as £€+0. Thus, in the
limit € -» 0, these terms do not lead to any change in the phase of the oscillations
and therefore in the asymptotic form (7.13) of the Poincare mapping. In particular,
the sign of k is irrelevant at large | .

A generalization of the results of this paper to Duffing — like equations

+1

(thﬁihed;by replacing'y3 by y29, in (1.1)) and to other forms of the forcing

term is under consideration.
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AERendix A: Proof of Lemma 3.2.

We consider first (3.5) and write:

7,(e) = t1/32bklo 27K/ = B3k

l

"ZO,K’]‘:‘( 't) + u (A-l)

where the b are determined by substitution in (3.5) and equating coefficients

klo
3 8/3

of equal powers of TC_S/ and 7 °/°. The result is a nonlinear equation for u(<T):

) |
a%u du 2 . 2.3
dT2+ZTdt * 3ok ¥t 3ok v Y

2:1/3 =5(K+1)/3 - 8(L+1)/3 K+1)
(A.2)

=O(

As T--», the solutions of the linear homogeneous part of (A.2) behave like
u o exp(- ¥) "(‘2::)(24/3) ; using the variation of the parameters, it is
s ,
straightforward to show by a contraction argument that (A.2) admits of a solution

1/3 - 5K/3 = 8L/3 K 1o Ay, the same

which falls off at infinity like T
argument shows that the solution is unique in the class of functiomns |u(z)l< tq,
q>0 as T>-= ., This establishes the existence and uniqueness ‘of "zé(‘c) and also
gives its asymptotic expansion. |

The equations for nzq( 7),q70 are linear and the argument is evéﬁ simpler,

The task is to show that the coefficients b are the same as the aqu of

klq

(3.3). We show that the equations determining them are the same. Consider bklo
first; writing 13-5/3 = X, '.:‘_8/3 = y, the equations for the bklo read:
5 _2 _5k_8L, 1 _5k_8l, k. 1+l  F . 1 _5k_8l,kel1
Lyt (73 TF oI Ny oF oF) ey +k1,obklo-(3 373 )% Y
k,l?O s L7 .

e 1+ b v ) =1 (A.3)

K#(0,0) <O

and it is easy to see that bklo may be expressed recurrently and uniquely in terms

. | B3 lé 'é_ t " - o
of b, . with k'< k,1'€1 or k'<k,1'<l3b_ =1

Now, the equations for the aqu are obtained by substituting (3.1),(3.3) into
(1.6) and equating coefficients of equal powers k,1l,q of x -/4:~5/3, y = st-8/3

and z = t::2 in turn. As is expected from (1.15), the set of equations for a1 is
>
decoupled from those with higher q and is given implicitly by the same expression

(A.3). 1f q> 0, the aqu (or bqu)f are obtained recurrently in terms of ak'l'q'

with k'<k, 1'<1, q'sq and permutations.

Sl R
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ABBendix B: Proof of Lemma 3.4.

The solutions v, 2( T ; € ) depend on £ through cf) and the lower limit of inte-
’
gration in (3.18). At &£ = 0,49( T;£=0) is given for T<O0 by:

cj? (z;e=0) = '7 (T) (B.1)

1/3 ~-1/2

with ’ZOO(Z) of (3.22), "Zoo('c Yy~ + o('C ) as t—--~ . It is true that,

uniformly on I, = E€_3/8+a O] , a>0:
lim (1 + 7273 14)(? £) = (I +z2/3 ' $ (30 (B.2)

Indeed, on an interval Iz= I, [~.—,.‘-,2"o,01,- we have the uniform estimate:(cf.(3.8)):

-1/8= 4/3! 53/43—2)) (B.3)

z(g)(t):—‘xgg)(t)e Oo(“t)(] +0(Y/t

obtained from the asymptotic expanéion (3.7); this implies (B.2). Now, (B.VZ) implies,
with (3.19): ‘
-1 ' ' ’ N
¥ Pcser redr< oz’ (8.8)

independently of € , on 'it

3/8+ a’ using (3.1),(3 3, xaL(t) and its first two derivatives

are bounded from above and below by <, tl/3 c t1/3 and their derivatives,cu> cy” 0.

d
Thus, (B.4) holds all the way down to —( % /2) 8-3/"8’. With this, Gronwall's

"Now, foritl>¢

inequality leads in (3.13) to:

-11/6

lwi('t 3 € ) wiw)(t ;i< c 51]3/6 s ;dwi/d't - dw§w)/df (t ;)< (B.5)

"3/8<L' < T

for -Jif2 ¢ o’ independently of &£.

Now, wiw)(t ;€ ) has a finite limit wiw)(t ;0) as €0, at any finite ¢ . We

can then let formally € -0 in (3.18) and obtain:
T

(W) 1 -1/4 ' '
w, ,(T;0) = 2(2;0) + —— fR( 0)) (z;0) sm[j (“" 0)dz" |w (Z‘ )dt

Eqn. (B.6) has a unique solution v 2(?_‘ 30) for T < const, as follows from (B.4)
’

and a contraction argument.
-3/8+a
We subtract now (B.6) from (3.18), separate out the integral over[— 726],
bound those on the rem31n1ng segments u51ng (B 4) and establish by means of "

Gronwall s mequahty and of (B.5) that LA (T ; £) converges to v, (T ;0) uniformly

-le 3/8+a -C ], prov1ded a is chosen appropriately large. The condition on a

( )(t ;0) approach

- ‘Co]’. The condition for this to happen is g3z 10/3—-} 0,

is due to the requlrement that the phases of w(w)( T;€), w
-[e 3/ Bfa

. Meach 'othej: on
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which means a »3/20. With a further restriction on a, we may even ensure that

dw,/dT(t ;€) approaches dw, /dT (T;0) on [- 5‘3/8‘“"“,- zo].

Using (B.2) and the fact that wl(t ;E€), wl(’C ;0) are E:p"(p70) close at
T =-Zo, we deduce by comparing the equations

d2w .

2 o+ P(riE)w=0 (B.6)
ar ¢ -

for ¢ and £ = 0, that w](”c 3 €), v (T ;0) approach each other uniformly on

[— ZO,O]as €20 (as well as their derivatives)

A coarse estimate through the above steps gives:

) d © dw i5/64,
lw(cse) = wiz;0) L)$2 (z5e) - (250 = o0ce'/0 (3.7)
for T onf{- 'CO,OJ.
Appendix C:  Proof of Lemma 4.6
The object of interest is the energy associated to (4.30):
E(Q)= l(i‘l’.)z +._1_w2(]+ )+-l-w3' (9)+J—W4.h2(6) (Cl)
2 \de 2V L TETIE O 12 1 .
Now, for small &€ :
4 h (o)< 0 o (€.2)
de 1 ; . ) *
if te [T0R£3p, EBP_S], since &ktz 1 and XR(t) is monotonically increasing. This
means:
2 3, dh
dE w_  dg lw’l 71 '
o < Tlal *—53 (.3
Letting:
- 3p
6, =8(T p€™") (C.4)

2

)
using the facts that f-g\dg/del do' = g(9 ) <cconst and w <C°E, multiplying (C.3)
Qa

by exp[- CO 2(0 )] and integrating bet®een 9,, 92> Ga:
0+

E( 0,)exp[-C_(&(B,) - E© )] <E(o) + j‘-;-]wl:;l-d—z)-l,exp[s—@b(g(e') - 8o ) ae' (c.5)

6,

Now, it is true that:
v 3/8
C. : dh “C, ¢]
-.1»_93) i | ‘a) ~
o 172 (2 <@l ] 2 GG (€.6)
TR e - oR S '
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so that the right hand side of (C.5) is bounded by a constant for all © , if:
laCo)l<c(e/e /8 . .7
for some q¢> 0. We show in fact first the foliowing:
Lemma C.l: Assume:
B(8) = m2(0)( 0/ .03 < (c.8)
with mo(é))—-> 0 as 8 —>» . Assume .further that, if 91< Q<61+T, mo(G )<Cmo(6]), .

with C independent of ¢,. Then E(6 )<const for all 6.

1
Proof: Let E(Q) =E(0Q) expL*C g0 )] . Since g(8)~ 1/6 2(cf.(l_b..9)),’lz‘:(9)

~obeys t:he same conditions as E(O ), with m (6) replaced by m(6). From (C.1),

(C.8), we deduce :

lwo)l<c, m(o) (o/ 038 .9
for some Cl> 0. Roughlyvspéaking, the argument is as follows: as a consequence
of (C.9) and the fact that hl(Q ) ~ ( Ga/G )3/8, the cubic and quartic terms in
(C.l> become negligible at high € with respect to tﬁe quadratic terms. Thus, if
the energy becomes unbounded as ¢ »= , its increasermust'be due to the quadratic
terms; this,however, contradicts (C.5). To make this precise, consider a pair

of points 92 = 9] + T, 9]> E-)a. Then (C.5),(C.9) imply:

2, 3/4 2 3/4 3 ' L/4
m ( @2)( 92/ Ga) m" ( 9])( Ol/ Ba) < Dm( @l)( Ga/ 9]) (C.10)
Multiplying by ( Ga/ 62)3/4 and using:
a+1ep e - - o1 A .11
where s 2 0 as Gl—°oo , we obtain
n’(0)) < w2( 6,)[1 - (3/4 ~&)1/ 0,7 (C.12)
where 6 — 0 if 0]—> > . In (C.12) we have used the fact that m(6.) —» O as
8 % , Iterating (C.12) for a sequence of points lén} s On = Gn—l + T, we
obtain:
) m( Q])
m(0,) < const ——7————n3 8:61 (C.13)

with. &> 0 if >~ . With (C.8),(C.9), we see :‘tv:hat Ww(e)]<c 96‘.., which
complies with (C.7) if 9 is large enough. This ends the proof.

L ;vComment C.l: Eqn.(4. 30) is dependent on £ essentlally through the interval

s 1n” -19 over wh1ch its solutlons are consldered Thxs 1nterva1 1ncreases indefini~.

;L{_f";tely as €2 0. The ¢ dependence of h (9),gfﬂ)}1s neghg:.ble for small £ and
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-1/2+e

and 9<¢ ,6>0.The bound (C.8) is assumed to be independent of &£ and to' hold

on 91< 6 < £-1/2+6 .
According to Lemma C.1, we are left with the obviously' simpler problem of

justifying (C.8). To this end, we let:

W= w( o /0)38 (€.14)
which leads to:
42 - hi(6)
A+ 218 4y + k() +Wh(6) + W L= =0 (C.15)
a6 4 ¢ do 1 3
where:
I5 1 ~ 3/8 '
= - o —— . = 0 .
K(e }. g8~ & 62 . h1 hl( / ea) 7 (€C.16)
It 1s true that:
~
; h .
dk _ =3 -1/4 3/4 ,l/ 1/2
& =oce™ , ol =ofeT g ), by (8)~ (C.17)
We shall show that the energy L( 9 ) associated to (C.15):
’ 2 2 3 4
Wy, i, Hoq2
L(e) = ( g6) *7 ¥R 5 h o+ g5 by (C.18)

has the property L(8)—0 as 0 »= ,

Comment C.2: If L(e)->0, IW(e )},Jdw/de| also vanish as 6w, Then:

3/4 . \3/4
3 dWw W 3 W 5_/6
E(Q)'(ea> RACHI Ga8e +§-2‘]=\"'> m,(6) (C.19)

Clearly, L(6)(1 -C,/e )<mo(9 Y<KL(6)( +(,/06 ) and thus mo(e+s.'r)<cmo(o) if
L(6+sT) < CL(8©), 0<s <1,
Concerning L(O ), we state first:

3p , £3P-SJ

Lemma C.2: L(8 ) is bounded on [TOR € by a constant Lo’ independent

of ¢ .,

2

Proof: As a consequence of (C.18), W ,{W3l ,W4 < const-L, where the constant

is independent of & . Integration of

4L . const- L( \+l ‘l l (ﬁz)l> (C.20)
40 1
leads then to the statement of the Lemdh.
'Comment,C.B: ;ﬁcegratioh of (C.28) between G'and 0'+5T leéds tos: (o< s<1)
L(6+sT) < C L(9) (c.21)

with a constént C close to uﬁity. With Lemma C.1 and Comment C.2, the proof

of Lemma "4.6,i‘s completed if we show that L(e’)-l?fag.ags 60 (cf.Comment C.1).
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To establish this, we describe in more detail the motion (C.15) by comparing

(o)

it with the motion W (0 ) in the potential of (C.15), however at a fixed 0 = G]

and without damping:

2 (o) 2, ' 3.,
AW w0 v ko ) + R (o) + 1 w® 720y =0 (c.22)
T2 1 1 1 3 1*71
do
Concerning the latter, we have the following, which is straightforward:

(o)(Q ) with energy bounded by L, are periodic,

Lemma C.3: (i) The motions W
with periods bounded from above (by Cu) and from below(by Cd(LO)), indgpendently
>6f7€ s(ii) given 2 >k >0, there exists kl<;l, indeﬁendent of ;he initial conditions,
so that, if the motion w(°)(e,) has period To; thevé)-interval Tko for which
@74 032 > kL) obeys T >k T,

We compare next .the solutions of (C.15) to those of (C.22), over a time
interval pCu, p large, using Gronwall's inequality. The calculations are easy;

details are given in Ref.‘s:

Lemma C.4: Assume W(© ), W(O)(Q ) obey the same initial conditions at 6= 6];
the energy of W( )(9 ) is L. Then, over a time 1nterva1 of length pCu:
' awe) C(p,L )
. (o) -dW . ? .
G - —— —— et e e d .
(i) max [[0(@) - W Yoo LG - )] < 7 (c.23)
(ii) if:
Cl(p!Lo)
L 2 —e——=B(8)) (C.24)
GZ i
1
W( 9 ) undergoes exactly one passage through zero at €9=G#n between two successive
(o) (o)

(6 ), then:

maxima of W (a)|; if Gno is the zero of W

C(p,L )
co € —®
n no 91117
(iii) if L obeys (C.24), the time interval in a period of W(8 ) where

(0).

lo (C.25)

(dW/d6)? > KL/2 is bounded from below by kT , with T the period of W
Comment C.4: According to Lemma C.4, those motions of (C.15) are certain to
be oscillatory for which the energy is high enough. If we choose 9 so that, e.g.
L >2 B(o ) (cf (C.24)), we are certain to have oscillatory motlons, at least
over an 1nterva1 of length pC . If the motion 1srnot guaranteed to be osc111atory
(L €B( 91)), the argument of Lemma C.2 shows that:
L(g, +pC) € B(OU +x) (C.26)

with:
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-3 —1/4

« = const (07> + F o7+ JETLRRRYE:

1 ) (C.27)

We show next:
Lemma C.5: If-Lo > 2B( 81), then, if 6] is large enough:

Lo
1‘ + kopcu
e

L( 61 + pCu) < —E BM( 61 + pCu) (C.28)

1
with some k <1,

Proof: If L > B( 91), the motlon is osc1llatory and:

'*P "1”l°‘~ ~ ~2
W 'W3'd 1 W4 d 1
L(0,) - L( 0+ pC ) > ( l LI L de (c.29)

Now, as in Lemma C.2, 12 < L( 6 )o( R w1th o of (C.27). Further, for @ 12 3kpC /2,

0<k<2, (Vis the potential in (C.10)):

0
J 3k ,'+k IéC“ k k,pCy '
Sucep jFae > Fucep (R 7 Ercep 3 (c.30)
V(w)<kL/2 o,
Thus:
k ¥PCy LCO )
L(O+pC ) < L(6)(1 + & - = ) < (C.31)
1 u i . 4 I3}
_ : 1 , I +kpC /8,

for Gl large and € small enough. With Comment C.4, we obtain:

L( 6+pC) < max [L /(1 + kpC / €), B(6 ) +« )] (c.32)

&
o

Since, for 6, large, the maximum is achieved by the first term, the proof is
completed,
Finally, we state:
Lemma C.6: For any 6 >0, there exists £, SO that, if €<£0(C‘ ), L(6;¢£)
. .. 3p 3p-$
becomes and stays less than © in the time interval ToRg <t<e
Comment C.5: This is the precise statement of L( 6;¢ )—> O as 6 — - (cf.

Comment C.1)

Proof: We notice first that:

B .(0) B (6 +pC )
M 17 o M 17w (C.33)
B(0) B( 6,+5C,)
Indééd; this is equivalentito': |
i k_pC, PC,
1 + -——0—-— < (1 + B ) (C.34)

1 . 9
which is true since k < l. It follows that, for any m, the upper bound on the

,energy,l., at 0 - Gl + mpCu is ach}:.eved by osc1llatory motions. By Lemma C,5, the
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upper bound is:

L L
_ o . o
BM( o} 1+ mpCu) = = T pC < K . (C.35)
—m o u ] m o
. 0,+(3-DpC

J =1
By choosing € small enough, we can allow for as many oscillations as we wish
-5
on [ToR 53p, £3p_ ] and thus cause the upper bound B, to become as small as

M
~t » o~ _S
desired. By Lemma C.l, if BM(O )< ¢ 1 then L < const-6; for € < ©6< e3P .

Appendix D: Proof of Theorem 5.2

Consider fifst the mapping:TPI'J. : (A , ‘Po) —> (R, ¢)(T =—¢ _S) = (Rg, ¥5)
with (R,¥ ) of eqns. (5.14-15) and §= 31;-7!'/16 of Lemma 5.3.

Lemma D.1: Rg ,¥  have any number of derivatives with respect to A, Yor
continuous with respect to & as ¢ —> 0.

Proof: <Consider the sequence ofv transformations (5.22), (5.26), supplemen- -

ted by Comment 5.4. At every fixed 6 , they imply:

(R, @)/ PR, £) = 1 + 0 + g) (0.1)
and:
' R R 2 ¥
—_— =l ~ - ~ — ~ -~ =1 = 0(h+g) (D.2)
’aRs 9@5 ?RS 3‘(5

where ~ means of the same order. It is thus sufficient to prove the statement

-8 as functions of A_ , ¥_ . Now,

of the Lemma for RS’ ‘Ps(t = ~-£ ) = Rggs (953 50’ 50

R5, ‘(’5 obey (5.23),(5.29). The right hand sides of (5.23), (5.29) are trigono -
metric polynomiaks of z, eqn. (5.21), with coefficients various powers of R

(or R_ in eqn. (5.29)). Taking derivatives on both sides of (5.23), (5.29) with

5
respect to ASo’ we obtain a pair of linear differential equations for ?RS/QASO,

9@5/9/\50, on the interval [90, (T = -€ ..g)] . It is convenient to write:

o
7 42 2, .
‘f’(G)-‘(’(e)+24 ASOJOhge o (D.3)
so that the equations for PA;DR/?AS -1, 9‘(’ /2 Ay read:
U S ar@x- % A.«J waety 0.6
dg 1 2 12
T iz Rsm As it - 77 CaFsh” + b rU*G) + b4>(‘f’ 12 SOJh de') (D.5)

d
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where aps 34» b b¢ are functions of & (also through the solutions Rs(e ) Y’s((—?)

R’
of (5.23), (5.29)), with the order of magnitude shown under the O(-) sign in
(5.23), (5.29). Integrating from 9 to @ in (D.4),(D.5), using the initial
conditions €, ( 9 o) - A& o) = 0 and adding, we obtain:

160 )] +| P (o)l <5 £€9) +§is<e) +—- Mg nZ(e' [ 1 e (o' N ACK )1] do'  (D.6)

with:

5(0") = lagl+ Jayl+ |byl + lb¢l (0.7)

5.(8)= j[(]aé**b ,)(q) 77056 (laq,(e ) +b (o )l)jh de" + ]2 (Rg ASo)hz(e'jde' (D.8)

and M. is the bound on R correspondlng to (5.13). Now, if 99 9(C=-£_5),>then,

S U5

for £ small enough

| C
[s(en)]| + 75 Mg n(e") do' < —o : (D.9)
J ( (1n _;_ )2/3
where we have used (5.52) and O </§</> . Further, using (5.24),(5.23):
sl < e+ g8 - | (D.10)

with q »0. It follows from Gronwall's inequality that (D.6) implies:
= . - 2
Ee)] , 1fLe)] < c (e /2 (D.11)
The same majorizations éj‘lold for the derivatives 'QRS/Q t’()soz (04 R '9?5/3 ‘(JSOE ?f,; Py -
Consider next the second derivatives, e.g. with respect to /A . Differentiating

(D.4),(D.5) with respect toA , one obtains a set of linear equations for FM_,‘(’A,L;

the coefficients of F ?AA are the same as those of (’A ffA in (D.4),(D.5). The

AN?
. . . 2

free term contains expressions like ( DaR/DRS)(l + PA) , etc. The term 'DaR/BRS

has the same order of magnitude as the right hand side of (5.23). Using the

estimates (D.11) and analogues, we conclude that the free terms are majorized

like (D.10). Gronwall's inequality yields then the desired result. The same

argument applies to the higher derivatives,

Comment D.l: The estimate: 9(_54)
T g 5 2.,
95/ A (=€ %) = 77 Aso ) baet (.12)

differs by terms of 0(€p) ,P>0 from ?‘f /oA, eqn. (5.35).
Lemma D.2: If {&){!m>0, RS,‘PS have a derivative with respect to/Z, eqn. (5.53),

continuous with respect to £ as £ > 0.

- Proof: 'Accordi'nvg"to (5'.’54), if fl){lm, the functions €, = ?RS/'a[l ,?ts 29{55/9%3 ,
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obey a linear equation with coefficients and free terms of the same order of

magnitude as those of (D.4),(D.5). Inequalities similar to (D.l1) may be obtained

thus fot: P{*’\?f . .
With this, we write at &=0(T=-£ "), -using (5.12),(5.14-15),(5.40):
ket (95)+S/6’ kt(8s)-3/6

-$
3 Ui (=€ )= ~V3 R sin(63-0 +%)e .
(D.13)

-£
UL(-8 ) = Rscos(Qs—Qo-l-(PS) £
With the help of the two solutions VI’VZ of (5.42), we obtain the coefficients

A,B in (5.45) as:

A(Rg,% ) =\3 Recos(8 -%)  , -B(R:,%) = R;(3 sin(e_ - %) (D.14)
Clearly, A,B have derivatives of any order with respect to Rg, (Pé , but these
are not continuous as £ -0, since 90 ~ 8—]/2. Taking derivatives with respect

to R ,% in the integral equation (5.45), we conclude, using the boundedness
of U, of Lemma 5.5 and Gronwall's Lemma that, for ¢ small enough, all derivatives

of U UI" exist and stay bounded as € —0.

L’
With Lemmas D.1,D.2, the proof of Theorem 5.2 is completed.

Comment D.2: The derivatives 'DULO/9R$ ,etc differ by quantities of O(ES),
s 70 from the estimates:

'>UL0/9R$~ PA/ORg«V, +79B/3 Ry-V,, etc. (D.15)

1

AEEendix E: Proof of Lemma 6.2

Several parts of the proof are similar to Appendix D. The change h(® )— -k(9)
is not, however, totally harmless, because h,k have different orders of magnitude.
Eqns. (D.1),(D.2) are the same, provided we replace O(h+g) by O(k+g) and we
move over to RS( 0), ‘?5(9 ). We denote Rs(eoR) = RSR’ (FS( GOR) = \OSR,RS(GO) = RSo
and introduce:

F5(0) = €50 +24f 2 de &.1)

tor.

The equatmns for e “DR /DR -1, ((;R =3‘€ /’aR read (cf‘. (D.4),(D.5)):
a
T Pa (0 * g (Fy Jz‘fofs(‘")“ + 0 k%o’ ) (.28)
4z ‘ - 7o ey k246"
;1%’ bR(l+(’R) +be(Pp - 73 JRsONU +00) k de' ) (E.2b)
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with the notation of Appendix D;now, laRl .(a*[, etc. are O( ka + kzg ) .
Integrating (E.2a,b) from §_to@ , inirerting the Vorderﬂ of integrals, using

€R( 6 )= O,WR(G ) = 0 and adding the resulting equations, we obtain the

inequality: o
Leg@l +1¥(0)] < 5.(0 +§e (s(e") + AC 0, "N PN+l ) d6'  (E.3)
a
with S(Q') of éD.7), o'
5.(0) = j{qaRmqu% = Cagl+ g J k2(e") R(oMae'] ae'<c 6P .4
G 62
and ) ‘9 . .
AC 6, o = K2on | (iagl +Ibglrde" < ¢ 1k2(o (o172 (E.5)
o' .
With (E.5), Gronwall's inequality applied to (E.3) gives a bound:
6
[ @1+1F,c0 )l < 500 + cf s cen s + 1 enVD ap< colMP (@6
) Cf

a - ~
Eqn., (E.6) implies that the matrix elements of the first colummn of DTPRZ’ eqn.(6.20)J

are bounded as £~ 0, On the other hand, using (E.1):

0
p 2
, - J .
QFS/ RSAA(Q ) < const ) k“de (E.7)
which is unbounded as £--0. &

In the same manner, we treat P¢ =?R5/9\05;, ((’.f= 9:{5/9{053 - 1. However, the

-1/2

free terms are different, and S(Y)(G) = 0(0,.

£
(2¢ 5/9 ‘PSJ) (0) < const, as £-%0.

). Instead of (E.7), we obtaip

We prove now the continuity of Roo( £ ),?oé(é ) as £ 0. Essentially, the
reasons for continuity are: (i) the initial conditions at G(TOR) for eqns.(5.23),
(5.29) (with h-»-k) are continuous as a function of &£ ; indeed, in eqn. (6.18),
the dependence on € (infand "ZR) is such that it leads to changes of O(Y) in
Ups

, -b
T - intervals of o(Y ), 0<b< 1, &

duR/dt (t= ToR)’ and thas in R5 as we move away from £= 0; (ii) over

ke I and we can compare directly the equations

for RS( e;¢), R5( 6 ;0) (and those for ‘PS) 3{(iii)the changes in RS( B3€ )’RS( 6;0)
for O intervals larger than T_h are yanishing as £~ 0. We need to make (ii)

precise and fix b. The differences AR(O;£) =R(6;£) - R(6;0) obey:

d . ~ ~
4a_ S T ad -1 an2p?
d6A¢5 leARS * o 495 55 (R + 0(a58) (E.8b)

8 where A4S = A (k4+kzg+|dg/d9l), the diff,ere'n'c,e between the values of the brackets
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at £ and € = 0; if T< T"b,o <b< 1, h(&e=0) # 0; the terms ZIR’ etc. depend on

both R(6;€),R(6;0), but are bounded in the same manner as the a é,etc.,of'(E.2a,b),

because M, eqn. (5.F3), is independent of & . The term A S is estimated as fol-
lows: (i) the dependence on &€ 1is present in the term &kt of k(6) and in the

- . . - . o - . .C - .
functions 'ZR(G ;€) of both k(&) and g( 8 );(ii) it is true that I'ZR(E, ) ZR(O,E)I
<CE 3/4 7/, as follows from the inner expansion (3.4); (iii) it follows that
the change in k is O(kAz/z + k(1 - ek Yy = O(k> £3/4T_2b +k T 1-b ) =
O(R;f'l—b ) . on a T interval 'C<T—b; (iv) the change in g is 0(g A“l/"( Yi(v) it

follows thét AS = 0( S- T l"-b) . U31ng the 1nequa11ty
A,{ﬂs < A‘Fs * 5% jA(k R7)de' . | ' (E.9)
integrating (E.S) from Qa to 6 , inverting integrals and using the initial
conditions of 0»("& ), we conclude as before:
TAR(0) 18 (o) =o'y (E.10)

for Géz T 4b/3] . Finally, we add the integrals from T—Ab/B to 00(9)

(to infinity for £ = 0); they- are 0(f2b/3). Fér b = 3/5, we obtain, uniformly,
\AR ®)i,la ‘_(—5(0)| = O(’S’Zy‘(5 ), if k = 0(1) as € » 0. This establishes the continuity
of R (0 ), Y’ (9 ) as £€- 0 and thus of R, e, ¥ (5), as stated in the Lemma,

Notice, if 0<Y~ 4v/3 , A YS(O) = 0(¢ ) as €~ 0, for some c »0.

We turn next to the continuity in £ of the derivatives ?RS(Q)/’)RSa’?‘F(e)/aRS'a’

uniformly inm 8 , and thus of the matrix elements of DPRZ’ eqn. (6.2a). We
subtract to this end the corresponding equations (E.2) written for € and ¢ =0
and notice that, with the notation (E.8):

Aa, =0( AS +SAR + SA¥) = 0(SA¥) ‘ (E.11)

R
T -4b/3J

Again, application of Gronwall's Lemma shows that, on [Oa"’ , the changes

{—4b/3

IA(’RI ,IAleare less than sc. The changes for 6> vanish as £-—> 0, which

proves our statement.

2

We can now bound the second derlvatlves 9 R/ ’.)R,. 0 ? ‘{’/’aR ., etc. To this

end, we d1fferentlate (E.2a,b) with respect to RS‘ and obtaln a set of twaazequations

with the unknowns PRR . As with (E.2), we can integrate from "a_:. to 0 ,

RR

change the order of integration‘;‘uSe'initial conditions and obtain an inequality

like (E.g)"‘for le |+l‘f’ ( part from th1s, the integral is the same as in (E 3.
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The free term Sf( ©) is, however, different; it contains now contributions from

PR,\Q H 0 . 9‘
(2)(9) [l aRRl(i + E’R)2 + 2lag | +€ )Py +|aM\¢R +la?]k (6" 1+ (6"))d gJde’
0, 8y (E.12)

+ (a<>b )

The dominant term is a ¢¢ Y’Iz{ ; using (E.7), we obtain:

s (g) = o 3 ) O (E.13)

and thus ' ‘ e
| Car(@ s 1Ppp(®) 1= 00 3) 5 P = odkzdg') | (E.14)

a

A similar analysis for the other equations involving ‘P¢¢',-P4>R,etc; show
that the values of ‘the latter are bounded by constants as £-0.

We can procged this way for the higher derivétives; the only change, in each
pair of equations, corresponding to each derivative (e.g. PRk 1, T(?Rkt“,l)
occurs in the free term: The dominant term at: a glven order p = k+l of the
derivatives occurs in eRp, Y’Rp and is ~ Jk de' (jk de" )p O(]f(2 p)/3)

Bo

The statement concerning the derivatives with respect to F is obtained

analogously.

AREendix F: Proof of Lemma 7.2

We give first some comments; the proof is then divided into a number of
steps, indexed with letters.

(a) We restrict ourselves f:)_ 0 <(!<J‘f. Then, the (mod 29 ) in (7.13) plays no
role and we can take =i <X<J. J'&) has only two extrema, )Cmin =3 -0 (-%=-2)) if
Zr0(<0), X == . 1£2>0(<0),X >k

(b) If 0 <Z<¥/2, f’z (2)< /de(z) Indeed, at g=4- X, Jl(/ X=g)= Jl(/ /a)
= -F+2< -2, It follows that{&z (2)H)<A 2—k nt Thus 'Xmi’ lies outside
I- an FZ and it cannot be part of a superstable orbit of J] (f).), i.e. FZd >
F c). =
S <2<Jl lau(i’) < fpu- Now,J| f )) va 2 >3 -21 thus, (by
5 -fvrlookmg at the shape of J’ (f f ), - de(E) > _Z #[ FZd’ IRZd
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(¢) Given « G[—ﬁ , /)], the equation J}(f?;l) = cannot have more than two

solutions with ”C,<ﬁ . If A= ')(+(X_), a fixed point of J , we denote its pair

o~ ~

by ')(4_ ).
(d) From (7.30), we verify S(:)T) < 0. This has the consequences (Ref.g,p.97):
— JNRY ,
(i) s¢J| Py < 0, for-all p>0;(ii)KJ) p)l cannot have a strictly positive minimum;
/
(iii) if (‘”'_’)X does not change sign on [a,b] and J P has three fixed points there,

—

the middle one is unstable and the other two stable; (i\}) Jl P cannot have more
. . o () (7% =TT)
than three fixed points on an interval [a,b] w1th(5’l >0 (or < 0). : :

(e) We describe in detail the situation at D)= —VJT/Z. Many arguments may be
taken over to J# -9/2. At 2= =% /2, for allﬁ, o] </J<37,Jl may be decomposed
into two maps JJ+ _ of [~ l@’OJ ,[O,/?] into themselves. If /}>l, there are

t I : ¥ . )
three fixed points ’X_, Xo’ ')1+ = -)/._;)(o is unstable. If {35 Jf2, it is clear

geometrically that [O,Y+],[X+,{]] are contracted in turn under Ji + into themselves
and to )('+.

Consider next the interval Fl(-— Wf2) = W/2,<{2< /?F(— -77/2);3('+ > 3/2 and
X + < A/2. All points of [O,)(_‘_] are ﬁxa‘pped under J| eventually into [1+, X_._J.
Further, under J : <>c+,),<‘*>—» (>c+,(1)~>[Ji(l@;f y, X,]. Now, if /2 <f</z2u'(—m),
- — e — . —— 2 g =
¢ pifr> T /2. Thus (71 2)y >0 on [J] (fr,p) and J2p sfr<f (J =J11)

! Ay { : H
If, in additionm, ﬂ<f2F(— I/Z),&J}Z)-( )(+) <l. Then, from (d)(iii),(iv) above, it follows
that ')(‘+<JT2(Y)<)( , for all )( in [')(+,F] . Thus,[)(+,ﬁ] is contracted under J 2
into itself and to X}. Therefore, the only invariant set of J s p(*_}.

At {ﬂ= (zzu(-f’/Z), sz has at least three fixed points: %/2, )(+, /IZu' From
the above, (‘:}_)—2),2 >0 onl J (qu)= Ji/2, /22u] and thus, from (d)(iii),(iv), there

— i )

. . 2 7 -2) . A
are no other fixed po:.’nts of JI“ on [J/2, qu] and \Jl x()(+) >1 at{l (22u' By the con
ke s 7 2 .. N
tinuity 1&..{3;\ of Q’ >x(k+)' this is true for {SF< [kFZu' Indeed, for Jl (‘R;Y ),
there is only one FF, eqns. (7.19-20),:15.!:11 (014 F<j' Let then, for /}F</I<f2u’
,’)(L’XR be the stable figgd ppiqtg of JI 2 in [:)T((l ),/] . S’;ncg, e.g. ona+, XR] 3
)(KM”Z(X)?)( 5 (X+’¥R] is mapped into itself and to XR under J/ 2. The correspon-
ding statement is true for ]‘XL’ )(+) and thus J} 2 contracts IO,F] N {Y‘A to XL’ XR'

'Th:e situation for J}_ is ‘sy’mmeyt‘i:ical and this ends the discussion of the

‘ situat‘:”ioﬁ,z' -3 /2,
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(f) We consider now the situation -3/2 < 3, <0, If F<FS(2)’ eqns.(7.14-15),

s)l has a single fixed point )(_+ > 0. If F<Flu(2) = -2,, then i+>x*. Thus,

J‘ ( f] ;X)) < )(+ for —(1<}C<)(*. Since 0<X+-—:}T(F;Y) <)(+-)( , it follows that[-/?,)cg
is co'ntracted under :)Tinto itself and to )C+. The same is true for [X*_,f],ﬂ(-z. If
.P)-—ZEFN(Z),:}\C’*_( )(+; if ﬁ <fs({)’[—{1’i+] is mappeiunderjl— eventua'lly into
‘[XJ’, )LJ; as above [Y+, X+]%Dl+,/ﬂ S (fl;f),XJ. Since Jl (f;fﬂ‘z,(s» 2) M >o
onU’( F,{) ) ’/J] . Thus, as for J, = -7 /2, if Fl<fls(z) and /l<f2u(2), J| has

at most one fixed point X{_ and a pair of period two.

: If /3>/ls(z' )’,‘Jrhas three fixed points-')(_< o, Xo< 0, ')(+>0, )(o i; unstable.
For 3” [Xo;jﬁ] = JI_,,, the discussion abox)e applies without changes., If F< Fld(‘Z)’
X_sX o) is contracted into itself and to X _; also, §_<X _; all points in
[F,i_] approa;:h X + under Jfand reach eventually X)I_. But [X~_,X_J is coﬁtracted
under j into itself and/to )('_. If F> ﬂld(Z), )? > )(__. The samerrr_easoning

as above shows that @77(3() > 0 on [- ‘ﬂ‘,j/r(-/?;’@)) so that, if ﬁ(min[ JT,/izd(Z )] s

the invariant set of JI_ =J}| consists of X_,_ and a pair of points of period

g Xe

two (at most).
(g) If -J< 2/<-%/2, the situation is symmetrical to that for - ¥/2< 3 < 0,

in that the roles of J :H—_ are reversed; )(0 > 0 and if /3<' [{ZS(Z’), the only

+?
!

fixed point is )( e

(h) 1If O <2<37/2, there is only one fixed point X_'_ 7 O,I+< 0<’1+. The
points on [- {3, )<+] reach eventually DZ_, X+]. Under:)—}- ,[i;, 'X*_]—.[X*_,I[?J—{:Jl—(ﬁ;‘/i) , XJ
Since FZu(Z)< ¥ -3 (see (b)) and I( K;ﬁ)> -J if [Z</22u(2), it follows
that @2))'(>0 on LJT((Z;[!),F] . Thus, the invariant set of J_/— contains JC+ and
possibly one pair of period two at most.

(i) 1£ J/2 <5<h , the situation is symmetrical : there is only one
fixed point X__ < 0, 32'_5)(_ and (72); > 0 on [—F, j/—(lz;—f)], as a consequence

N

of {I.Zd.(z y< 2 »(_see »(b)).

This ends the proof of Lemma 7.2.
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