
The Onset of Bifurcations in the Forced

Du�ng Equation with Damping

Ion Sabba Stefanescu

March 27, 2012

Liebig Str.6, 76135 Karlsruhe, Germany

Abstract

The paper presents a complete description of the periodic solutions of the Du�ng equation:

ÿ + 2∆ẏ + y3 = Γ cos t

for large values of the forcing Γ and of the damping ∆. It contains a proof that the equation admits of
an in�nite sequence of bifurcation curves in the Γ −∆ plane, alternately of the saddle-node and odd
periodic - simply 2π-periodic type, whose maxima lie at large Γ along the line:

∆c(Γ) =
1

12π
ln Γ− 1

3π
ln ln Γ + C(Γ)

where C(Γ) has a �nite limit as Γ→∞. The positions of the maxima are interlaced in asymptotically
equal intervals of Γ1/3, with a spacing of 1.403 units. For ∆ > ∆c(Γ), the Du�ng equation admits of
a unique periodic solution if Γ is high enough.
These results are obtained by showing that the half-period Poincaré map o�ered by the Du�ng

equation is asymptotically equivalent to a map of a circle into itself, according to:

χ⇒ β cos(χ+ Σ)

where χ is an angular variable and β, Σ depend on Γ,∆. The numerical constants appearing in the
circle map and its corrections are determined in the limit Γ→∞ by a parameter-free boundary layer
equation and its variation.

1. Introduction

This paper is concerned with the Du�ng equation with external forcing and damping in its simplest
form:

ÿ + 2∆ẏ + y3 = Γ cos t̄ (1.1)

This equation exhibits a large variety of periodic solutions, possibly with periods di�erent from that of
the driving force and whose number changes with the values of the parameters ∆,Γ. These solutions
may be studied at low forcing by approximate analytic methods (as in the classical books of Hayashi
[1964], Stoker [1950], Hagedorn [1978], Landau & Lifshitz [1960]) or numerically in larger domains of
the parameters Γ,∆. There exist well-known diagrams, due to Y.Ueda[1980], in the Γ − ∆ plane of
the boundaries of regions where (1.1) admits of a certain type of periodic solutions, e.g. with a given
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period 2πm/n. As the damping is decreased, these plots become increasingly intricate [Ueda, 1980].
For ∆ > 0.1 a diagram similar to Fig.1 of Ueda [1980] extending to Γ ≈ 200 may be found in Höhler
[1993] (A similar diagram, somewhat less detailed, exists in Sato et al. [1983] ). If, at every �xed Γ,
∆ is increased,one reaches always a region where (1.1) admits of a unique 2π-periodic solution. If a
2π-periodic solution yP (t̄) of (1.1) is unique, then it is necessarily odd-periodic (i.e. its Fourier series
contains only odd harmonics):indeed, yP1(t̄) ≡ −yP (t̄+ π) is also a solution of (1.1)and, since it is by
assumption identical to yP (t̄), it follows that, for all t̄:

yP (t̄) = −yP (t̄+ π) (1.2)

From the Γ −∆ diagrams of Ueda [1980](also of Höhler [1993]) one sees that, moving along a line
of constant ∆ (at an intermediate value, say 0.2 < ∆ < 0.5) starting at Γ = 0, there is �rst a small
Γ-interval where (1.1) admits of a unique (odd-)periodic solution yP (t̄); this solution is also stable: it
is an attractor in a Poincaré plot of period π. At a certain value of Γ = ΓLSN a saddle-node bifurcation
occurs and two new solutions, both odd-periodic, appear, one of which is stable, the other unstable.
The "`earlier"' stable solution yP (t̄) may be continued smoothly past ΓLSN but "`annihilates"' at a
higher Γ = ΓRSN with the unstable solution originating at ΓLSN in a reverse saddle-node bifurcation.
The remaining stable odd periodic solution, now unique, may be continued in Γ up to a point ΓLF where
it undergoes a pitchfork bifurcation of a special type: it becomes unstable when continued past ΓLF and
two simply 2π-periodic (not odd-periodic) stable solutions appear for Γ > ΓLF ; these latter disappear
again at a higher ΓRF , if the damping ∆ is high enough1; at smaller values of ∆ one traverses �rst an
interval where the two stable solutions above lose their stability and two further 4π-periodic solutions
appear with a shorter life (in Γ); if ∆ is small enough one traverses a whole sequence of bifurcations
leading to an attracting chaotic motion, presented in Ueda [1980, 1979] in well-known pictures. At
values of Γ larger than ΓRF one meets again an interval of uniqueness, up to the next saddle-node
bifurcation: for ∆ su�ciently large,the saddle-nodes and �ip bifurcations interlace.
A detailed study of eq.(1.1) at values of the forcing between ca.850 and 1500 and a damping ∆ = 0.25

is the object of a paper by J.G.Byatt-Smith[1986]; see also Byatt-Smith [1987]2. The description of
bifurcations given above is complicated by the appearance of 6π-periodic solutions, which also generate
islands of chaotic motion as one moves up in Γ. There are also windows in Γ, where no chaotic motion
exists but, e.g. 12π -periodic solutions. A study of (1.1) by analogue methods up to Γ ≈ 2000 is
presented by F.N.H. Robinson[1989], who points out the periodicity in Γ1/3 of the way periodic solutions
multiply (and disappear). A recent beautifully illustrated description of the formidable intricacy of
the bifurcation diagrams for equation (1.1) is given by C.Bonatto, J.A.C.Gallas and Y.Ueda [2008].
Numerical evidence suggests that the sequence of bifurcations e.g. at ∆ = 0.2[Parlitz & Lauterborn,
1985] or ∆ = 0.3[Höhler, 1993] is in�nite; the positions of the maxima of the saddle-node and �ip
(pitchfork) bifurcation curves appear to be equidistant in the variable Γ1/3 (see also Sato et al. [1983]
for an early attempt to explain this regularity, quite di�erent from the present one)
The question arises whether an analysis of eqn.(1.1) can explain these phenomena from �rst prin-

ciples. Since the complexity of the diagrams increases with decreasing damping ∆, it is tempting to
start such an attempt from the region of high ∆ where the solution of (1.1) is unique and give an
explanation for the appearance of bifurcations as the damping becomes smaller. To the knowledge of
the author, there exist almost no published descriptions of the domain of uniqueness of the solutions
of (1.1), with the exception of the result of W.S.Loud [1955] who shows that, if an harmonic term
+ky is present in (1.1), then (1.1) has a unique periodic solution at every �xed Γ, provided ∆ is large
enough (essentially ∆ > const × Γ); it seems, however, that the method is not readily extendable to

1the index F on the values of Γ comes from "`�ip"': the pitchfork bifurcation of the period 2π Poincaré map is in fact
a �ip bifurcation of the half period Poincaré map (see Sect.III and VIII)

2The asymptotic expansions for the solutions of (1.1) given in the papers by J.G.Byatt-Smith appear also in the present
work (Sects.V,VI), although derived in a di�erent manner
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the situation k = 0 of (1.1). Since the present work is concerned with the regime of large forcing Γ, I
refer to some unpublished internal reports, which show the qualitative behaviour of the unique periodic
solutions at high damping [Höhler & Stefanescu, 1987] and establish their uniqueness [Stefanescu, 1989]
for large enough Γ in a domain above a line ∆(Γ) for which:

lim
Γ→∞

ln Γ

∆(Γ)
= 0 (1.3)

In a subsequent internal report [Stefanescu, 1990] it was shown that uniqueness is lost as the damping
traverses a line ∆ ≈ ln Γ and that a sequence of bifurcations alternately of saddle-node and pitchfork
type develops for lower ∆ (if Γis large enough). This result was based on a controlled approximation
by means of averaging methods of the (half-period) Poincaré map provided by the Du�ng equation
(1.1).The main conclusion was that asymptotically the Poincaré map is well represented by a circle
map:

χ⇒ β cos(χ+ Σ) (1.4)

with β,Σ depending on Γ and ∆. The bifurcation structure of (1.4) is then easy to obtain. This report
remained unpublished at that time. Its results were summarized by the present author in an Appendix
to the work of G.Höhler [1993]. The present work is essentially a repetition of the contents of this
report, including the correction of some calculational mistakes 3 , a more careful development of the
arguments and the addition of some drawings.
It is one of the results of this paper (and of [Stefanescu, 1990])that the "`tips"' of the saddle-node

and �ip bifurcations, which reach up to the highest values of ∆ at �xed Γ, lie asymptotically along a
line (cf.eq.(8.1) below):

∆(Γ) =
1

12π
ln Γ− 1

3π
ln ln Γ + .. (1.5)

These maxima are predicted to be asymptotically equidistant in the variable Γ1/3 with a spacing given
in leading order by (cf. eq:(8.3) and Fig. 13):

δ(Γ1/3) = Γ
1/3
F,p − Γ

1/3
SN,p = Γ

1/3
SN,p+1 − Γ

1/3
F,p ≈ 1.403 ≈ π

√
3
∫ π/2
−π/2 | sin t|1/3dt

(1.6)

The problem of the description of the Poincaré map of (1.1) at large Γ was taken up again a little
later by G.Eilenberger and K.Schmidt ([1992], [1998]). These authors also derive the circle map (1.4)
as a limit of the Poincaré map using, however, a di�erent approximation scheme. Since these are the
only papers which treat (1.1) in a spirit related to that of the present work - with similar conclusions
- I shall sketch in the last section a comparison of the two approaches.
We introduce next the notation used throughout this work. We change in (1.1) variables to:

x =
y

Γ1/3
, t = t̄− 3π

2
, ε =

1

Γ2/3
, µ =

∆

Γ2/3
(1.7)

so that it becomes:
εẍ+ 2µẋ+ x3 = sin t (1.8)

and Γ → ∞ means ε → 0, i.e. the coe�cient of the second derivative vanishes. The problem of
discussing solutions of (1.8) for small ε is a matter of singular perturbation theory, as expounded in the
books by R.E.O'Malley [1974] or D.R.Smith[1985]. the question is well known (for linear equations)in
the semiclassical treatment of quantum mechanics - the (J)WKB method. Eqn.(1.8) is the form of
Du�ng's equation used throughout this paper.

3without consequences for the conclusion
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If one changes the time unit further to t̂ = t/
√
ε,(1.8) becomes:

d2x

dt̂2
+ 2r

dx

dt̂
+ x3 = sin(

√
εt̂), r =

µ√
ε

=
∆

Γ1/3
(1.9)

This is the limit of extremely slowly varying forcing at small damping if ∆/Γ1/3 vanishes as Γ→∞ and
is an invitation to apply the adiabatic theorem of classical mechanics [Landau & Lifshitz, 1960],[Arnold,
1978]. Eqn.(1.9) is the starting point of the approximations to the Poincaré map of (1.1) developed by
G.Eilenberger and K.Schmidt[1992]
We give next a summary of the behaviour of (1.8) at high damping; the unique solutions that are

obtained are qualitatively di�erent depending on the relative magnitude of ∆ and Γ (or of µ and ε).
Assume ∆ = ∆(Γ) is a monotonically increasing function of Γ, for Γ→∞ (large Γ).
If, as Γ→∞, µ = ∆/Γ2/3 > µ0 > 0, we change variables in (1.8) to:

z = µx, ε̄ =
ε

µ
, µ̄ =

1

µ3
(1.10)

and obtain:
ε̄z̈ + 2ż + µ̄z3 = sin t (1.11)

As ε→ 0,(1.11) reduces to:
2ż + µ̄z3 = sin t (1.12)

It is easy to show that, if µ̄ is bounded, (1.12) admits of a unique periodic solution which can be
improved by iteration of (1.11) to a periodic solution zP (t) of the latter; further, zP (t) is unique
[Stefanescu, 1989].
However, if µ→ 0 as ε→ 0, eqn.(1.8) reduces in this limit to:

x3 = sin t (1.13)

with the solution:
x00(t) = (sin t)1/3 (1.14)

Corrections to x00(t) cannot be obtained by iterating (1.8), since the derivatives of x00(t) at t = 0 are
not �nite. We expect nevertheless (1.14) to be a good approximation to periodic solutions of (1.8)
away from t = 0. The departures of the solutions of (1.8) from (1.14) near t = 0 are obtained by a
boundary layer analysis (the book by C.M.Bender and St.A.Orszag [1978]contains an excellent intro-
duction to this subject - treated otherwise in detail in the reference manuals on singular perturbation
theory[O'Malley, 1974],[Smith, 1985]).Let:

t = µ3/5τ, x = µ1/5τ (1.15)

so that (1.8) becomes:

ε

µ8/5

d2η

dτ2
+ 2

dη

dτ
+ η3 = µ−3/5 sin(τµ3/5) = τ − µ6/5

6
τ3 + ... (1.16)

To zeroth order in µ6/5, we are interested in that solution of (1.16) which behaves like τ1/3 as τ →∞,
so that it matches x00(t). If ε/µ8/5 → 0 as ε → 0 (i.e.∆/Γ1/4 → ∞), this solution is obtained by
improving iteratively the solution of:

2
dη

dτ
+ η3 = τ. (1.17)

with the same boundary condition. A "`conjunction"' of this solution inside the boundary layer with
(1.14) outside it can be improved to a unique (odd-)periodic solution of (1.8)([Stefanescu, 1989], [Höhler
& Stefanescu, 1987]: see Section III of this work for related procedures).
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If, however, ∆/Γ1/4 → 0 as ε→ 0, the appropriate boundary layer quantities are:

t = ε3/8τ, x = ε1/8η, γ =
µ

ε5/8
(=

∆

Γ1/4
) (1.18)

in terms of which (1.8) becomes:

d2η

dτ2
+ 2γ

dη

dτ
+ η3 = ε−3/8 sin(ε3/8τ) = τ − ε3/4 τ

3

6
+ ... (1.19)

As ε→ 0, the solutions of (1.19) obeying η(τ) ≈ τ1/3 as τ → −∞ are oscillatory as τ → +∞ and are
damped in a "`time"' τ ≈ 1/γ →∞.
We distinguish thus three regimes of (1.8) for large Γ: (i)µ > µ0 > 0 as ε → 0; (ii)µ < µ0

and ε/µ8/5 < const as ε → 0; (iii)µ → 0, γ = µ/ε5/8 < γ0 as ε → 0. Situations (i),(ii) lead to
unique periodic solutions of (1.8) for large Γ; for a proof see the internal report [Stefanescu, 1989].The
transition to nonuniqueness occurs in region (iii)(cf. eqns.(1.3),(1.5)). We shall thus assume throughout
the present work that:

γ =
∆

Γ1/4
=

µ

ε5/8
< γ0 as ε→ 0 (1.20)

and use the notation of (1.18). In view of (1.5), we �nd it convenient to use instead of µ the variable:

κ =
µ

ε ln(1
ε )

=
3

2

∆

ln Γ
(1.21)

so that bifurcations occur when κ = O(1) as ε→ 0.
The paper is organized as follows: in Section II, some general preparatory statements are established

concerning the boundedness of the solutions of (1.8) and the manner in which they approach each other
in time. Section III introduces the inner and outer expansions associated to (1.8); these are combined
and improved to two special, nonoscillatory solutions XL(t), XR(t) of (1.8), de�ned for t < 0(L),
t > 0(R) in turn. These solutions 4 are taken as references for t < 0, t > 0 in turn and the Poincaré
map P is de�ned in terms of the di�erences:

vL(t) = x(t)−XL(t), t < 0; vR(t) = x(t)−XR(t), t > 0 (1.22)

In Section IV a precise bound is derived on the region D0(ε) of phase space where invariant sets of the
map P may exist. Sections V and VI establish controlled approximations for quarter period Poincaré
maps PL, PR relating sections at t = −π/2 and t = 0 (PL) and t = 0 and t = π/2 (PR) in turn.
In Section VII the complete (half-period) Poincaré map P(ε, κ) is written down and its limiting form
for ε → 0, the circle map Π (1.4), is established. Finally Section VIII discusses the extent to which
bifurcation properties of the circle map can be transferred to those of the complete mapping P(ε, κ)
for small, nonvanishing ε. In particular the statements of the Abstract concerning the asymptotic
distribution of the bifurcation lines are derived. The paper is closed with some general remarks and a
short comparison with related papers of G.Eilenberger and K.Schmidt[1992; 1998].

2. General Preparation

2.1. Eventual boundedness of motions

Lemma 2.1 There exists a rectangle:

R : |x(t)| < B1, |dx
dt
| < B2√

ε
(2.1)

4they are called creeping solutions by G.Eilenberger and K.Schmidt[1992]
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so that all solutions paths (x(t), ẋ(t)) of (1.8) eventually get inside it. The constants B1, B2 are inde-

pendent of ε, µ if µ and ε/µ are su�ciently small.

Proof :The argument is inspired by and similar to the one due to T.Yoshizawa [1953c; 1953b; 1953a]
and presented in the book of G.Sansone and R.Conti [1964] . We consider the Lyapunov-type function
L(p, x, t) given by: (p = dx/dt)

L(p, x, t) = E(p, x, t) +D(p, x) (2.2)

E(p, x, t) = ε
p2

2
+
x4

4
− x sin t (2.3)

D(p, x) = 0 if p > max[(
|x|
µ

)1/2, (
A

µ
)1/2]

= ε(p− (
x

µ
)1/2) if |p| < (

x

µ
)1/2, x > A

= −2ε(
x

µ
)1/2 if p < −(

x

µ
)1/2, x > A

= −2ε
x

A
(
|x|
µ

)1/2 if p < −(
A

µ
)1/2, |x| < A

= 2ε(
|x|
µ

)1/2 if p < −(
|x|
µ

)1/2, x < −A

= −ε(p− (
|x|
µ

)1/2) if |p| < (
|x|
µ

)1/2, x < −A

(2.4)

where A is a constant, which will be chosen appropriately in the following. The function L(p, x, t) is
continuous and piecewise di�erentiable. In opposition to the functions considered in Sansone & Conti
[1964] the function L in (2.2) is time-dependent, however in a "`mild"' manner: it is 2π-periodic. The
choice of D(p, x) is a modi�cation of the one used by G.E.H.Reuter[1951], also presented5 in Sansone &
Conti [1964, p.376,ch.VII,�3]. Di�erentiation of (2.2) and use of the Du�ng equation (1.8) establishes
that:

dL

dt
= −2µp2 − x cos t+

∂D

∂x
p− 1

ε

∂D

∂p
(2µp+ x3 − sin t) < −δ < 0,

if x, p ∈ CR0, R0 = {|x| < A, |p| < (
A

µ
)1/2}

(2.5)

if, e.g. A ≤ 2 and µ, ε are appropriately small (depending on A, e.g. for A = 2, µ < 1/2 , ε/µ < 1/2).
The quantity δ is independent of (x, p) in CR0. As a consequence of (2.5),for any trajectory (x(t), p(t)
which starts at t = t0 in CR0 and for any �nite interval ∆t,

L(x(t+ ∆t), p(t+ ∆t), t+ ∆t)− L(x(t), p(t), t) < const < 0 (2.6)

as long as the trajectory stays in CR0.
For any (x, y) outside R0 we de�ne two functions, related to (2.2):

LM (x, p) = ε
p2

2
+
x4

4
+D(x, p) + |x|

Lm(x, p) = ε
p2

2
+
x4

4
+D(x, p)− |x|

(2.7)

5Use of the function o�ered for a more general situation by G.E.H.Reuter turns out to be appropriate only if the
damping ∆ increases faster than Γ1/3
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Figure 1: The rectangles R0,R1 used for D(p, x) and the curves Clim, Cm

which both increase inde�nitely as |x|, |p| tend to ∞ along any direction in the (x, p) plane, uniformly
with respect to the direction. Further, we can replace the rectangle R0 with a larger one R1, so that
both LM , Lm are monotonically increasing outside R1 along any ray in the (x, p) plane. One veri�es
that e.g. the rectangle

R1 : {|x| < A, |p| < 1√
ε
} (2.8)

ful�lls this condition. The various domains of the (x,
√
εp) plane that appear in the de�nition of

D(p, x), eq.(2.4) are shown in Figure 1 for the situation ε/µ = 1/2, ε = 1/4. The ε-dependence
becomes weaker as ε→ 0 at constant ε/µ with this choice of variables, since the changes of D(x,

√
εp)

between the various domains are proportional to
√
ε. The rectangle R0 outside which dL/dt < 0 is

shown with a dotted line, the "`increased"' rectangle R1, eq.(2.8) with a continuous line. Let now

Llim ≡ max
(x,p)∈∂R1

LM (x, p) (2.9)

where ∂R1 denotes the boundary of R1. By our choice of R1,for a trajectory starting in CR1, as long
as the corresponding function L(x(t), p(t), t) assumes values strictly larger than Llim, it is certain not
to leave CR1. Indeed, by (2.9) crossing ∂R1 requires L ≤ Llim. But in CR1, the value L(x(t), p(t), t)
decreases monotonically with time by (2.6) so that, for any value L1 > Llim there exists a time t at
which L(x(t), p(t), t) = L1.
Consider now such a value L1 and the closed region R̄ in the (x, p) plane delimited by the closed

curve:
Cm : Lm(x, p) = L1 (2.10)

It contains the rectangle R1 strictly in its interior. According to the above, all trajectories starting in
CR1 reach at some time t the region R̄ since their corresponding L-function achieves the value L1.
Such a trajectory cannot leave the domain R̄ by traversing (or turning back from) the curve Cm because
outside Cm, L > Lm(x, p) > L1 and this would contradict (2.6). Thus the trajectory is "`trapped"' in
R̄. We obtain the statement of Lemma 2.1 by choosing R as a rectangle containing Cm in its interior:
one veri�es that this is so if B1 ≈ 4, B2 ≈ 8. This ends the proof of Lemma 2.1.
The curves Clim, corresponding to LM (x, p) = Llim, eq.(2.9) Cm of (2.9)(enclosing Clim) are shown

in Fig. 1.
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2.2. The approach to some special solutions

The following describes the manner in which a solution x(t) of (1.8), trapped inside the rectangle
R of Lemma 2.1, approaches a solution x0(t) also contained in R and subjected to the following
supplementary

Condition 2.1 There exist a, b>0, independent of ε, so that, for all t in some interval [t1, t2] with
0 < t1 < t2 < π (mod π )

|x0(t, ε)| > a, |dx0

dt
(t, ε)| < b (2.11)

Solutions of (1.8) contained in the rectangle R and obeying this condition will be shown to exist in
Section 3. For any other x(t) staying in R for t > t0 we may state:

Lemma 2.2 Assume µ/ε1/2 = ∆/Γ1/3 < A0 and ε/µ = 1/∆ → 0 as ε → 0. Then, for ε su�ciently

small, there exist constants K,C, independent of ε, so that, for any solution con�ned to the rectangle

R of (2.1) and for t ∈ [t1, t2]:

max[|x(t)− x0(t)|, ε1/2|dx
dt

(t)− dx0

dt
(t)|] < Ke−Cµ(t−t1)/ε (2.12)

Proof : Let C < 1 and:
u(t) = (x(t)− x0(t))eCµ(t−t1)/ε (2.13)

It veri�es:

ε
d2u

dt2
+ 2µ(1−C)

du

dt
+ u[3x0(t)2 +

µ2(C2 − 2C)

ε
] + 3u2x0(t)e−Cµ(t−t1)/ε + u3e−2Cµ(t−t1)/ε = 0 (2.14)

Consider the Lyapunov function:

Lu =
1

2
(ε
du

dt
+ 2µC̄u)2 + εG(u, t) (2.15)

with C̄ ≡ 1− C and:

G(u, t) =

∫ u

0
u′F (u′, t)du′ (2.16)

where uF (u, t) denotes the last three terms of the l.h.s. of (2.14). The forms F (u, t), G(u, t) are
positive de�nite for t ∈ [t1, t2] if, e.g.C < min(1/2, a2/(4A2

0)). Using (2.14) we get:

dLu
dt

= −2µC̄(u2F (u, t)− ε

2µC̄

∂G

∂t
) ≡ −2µC̄u2H(u, t) (2.17)

One veri�es that, with the choice of C above, if ε/µ = 1/∆ is su�ciently small, H(u, t) (of (2.17)
is positive de�nite for t ∈ [t1, t2]. Thus the solution paths (u, du/dt) stay contained in the bounded
domains de�ned at every t ∈ [t1, t2] by:

Lu(t) < Lu(t1) (2.18)

But Lu(t1) = O(ε), since (u, du/dt) are contained in the rectangle R of Lemma 2.1 and µ/
√
ε < A0.

It follows from (2.18) and (2.15) that G(u, t) = O(1) for t ∈ [t1, t2] and since G(u, t) = u2F1(u, t)
with F1(u, t) strictly positive de�nite, it follows that u(t) = O(1) for t ∈ [t1, t2]. Further, since
εdu/dt + 2µC̄u = O(ε1/2), and µ/

√
ε is bounded, we conclude that du/dt = O(ε−1/2) for t ∈ [t1, t2].

Returning now to (2.13) we obtain (using again the bound on µ/
√
ε for the evaluation of the time

derivatives) the statement of the Lemma.
The bound µ/

√
ε < A0 delimits in the Γ −∆ plane a region where the damping may still be quite

large to ensure at small ε uniqueness of the periodic solution of (1.8). In this paper the concern is the
region of relatively small damping (∆ ≈ const ln Γ) where uniqueness gets lost.The domain of larger
damping may be treated completely, as is shown in the unpublished report [Stefanescu, 1989]
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3. Inner and Outer Expansions. Reference Solutions

3.1. Left hand reference solution

The outer expansion

For small ε and µ and for t away from nπ, we expect to obtain an approximate solution x(t) of

εẍ+ 2µẋ+ x3 = sin t (3.1)

by simply starting with:
x00(t) = (sin t)1/3 (3.2)

and determining step by step with the help of (3.1) the coe�cients xkl(t) of an expansion:

xo(t) ≡
∑
k,l

µkεlxkl(t) (3.3)

Equating to zero the coe�cients of the various powers of µ and ε we obtain successively:

x10(t) = −2ẋ00

3x2
00

, x01(t) = − ẍ00

3x2
00

, .. (3.4)

and so on, so that we may state, in general:

Lemma 3.1 With the de�nition in (3.3):

xkl(t) = t1/3−5k/3−8l/3
∑
q

aklqt
2q (3.5)

where the sum is uniformly and absolutely convergent for t in [−π + σ, π − σ], for any σ > 0.

The proof is done by induction: the set of coe�cients {xk0(t)} and {x0l(t)} form "`closed"' groups
allowing the recursive determination of xk0(t) in terms of the xk′0(t) with k′ < k and of x0l(t) in terms
of x0l′ with l′ < l. The coe�cient xkl(t) may be determined in terms of the xk′l′ with k′ < k, l′ ≤ l
and k′ ≤ k, l′ < l. Thus we may determine successively the sets {x1l},{x2l},etc.. From (3.4), we see
that,e.g.:

x10(t) = −2

9
t−4/3 cos t

(
t

sin t

)4/3

, x01(t) =
2

27

2 + sin2 t

t4/3
(
t

sin t
)7/3

The ratio t/ sin t is a holomorphic, even and zero-free function of t in a disk of radius π − σ around
the origin; the same is true of (t/ sin t)4/3 which justi�es the statement about the convergence of the
series in (3.5) in this situation. The same is true for x01(t) and is then transmitted recursively to all
other coe�cients. This ends the justi�cation of Lemma 3.1.
The coe�cients aklq in (3.5) may be obtained step by step directly as follows: let α = µ/t5/3,β =

ε/t8/3 and denote by:
D(x) ≡ εẍ+ 2µẋ+ x3 (3.6)

Then one veri�es that eq.(3.1) means(vgl.(3.5)) :

D(t1/3
∑
k,l,q

aklqα
kβlt2q) =

∑
k,l,q

bklqα
kβlt2q+1 =

∑
q

(−1)q
t2q+1

(2q + 1)!
(3.7)

where the bklq are combinations of the ak′l′q′ with k′ ≤ k, l′ ≤ l and q′ ≤ q, but with only one
term containing aklq namely 3a2

000aklq. This equation allows the recurrent determination of the aklq
by equating the coe�cients of αkβlt2q+1 on both sides, starting with a000 = 1. The coe�cients with
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q = 0 (or k = 0 or l = 0) build a "`closed"' group: the akl0 may be determined successively from a000.
Then the calculation of aklq for q > 0 requires the ak′l′q′ with at least one strict inequality in the set
(k′ ≤ k, l′ ≤ l, q′ ≤ q).
An obvious question is: to what extent do we satisfy (3.1) if we restrict ourselves to a (K,L)

truncation of (3.3)? From (3.7) we see that terms containing bklq with k > K or l > L are, in general,
nonvanishing, so that the action of D produces terms of O(tαK+1, tβL+1),i.e. O(tµ(K+1)/t5(K+1)/3 +
tε(L+ 1)/t8(L+1)/3). This shows that a truncation of (3.3) is approximately a solution only for t away
from zero, i.e. outside the boundary layer, which justi�es the name outer expansion.

The inner expansion

The substitutions: x = ε1/8η, t = ε3/8τ change (3.1) to:

d2η

dη2
+ 2γ

dη

dτ
+ η3 = ε−3/8 sin(ε3/8τ) (3.8)

which γ = µ/ε5/8. It is natural to look for a solution of (3.8) as an "`inner expansion"' in terms of the
parameter ε3/4:

η(τ) = η0(τ) + ε3/4η1(τ) + ε3/2η2(τ) + ... (3.9)

where the ηq(τ) are in turn solutions behaving like τ2q+1/3 as τ → −∞ of the di�erential equations:

d2η0

dτ2
+ 2γ

dη0

dτ
+ η0(τ)3 = τ (3.10a)

d2η1

dτ2
+ 2γ

dη1

dτ
+ 3η0(τ)2η1(τ) = −τ

3

6
(3.10b)

d2η2

dτ2
+ 2γ

dη2

dτ
+ 3η0(τ)2η2(τ) + 3η1(τ)2η0(τ) =

τ5

5!
, etc. (3.10c)

Because we wish the solution η(τ) to approach at large −τ the function (sin t)1/3/ε1/8, it is natural
to choose those solutions of (3.10a),(3.10b),etc. which behave like τ2q+1/3 as −τ →∞, corresponding
to the terms (−1)qε3q/4τ2q+1/3/(2q+ 1)! of the Taylor expansion. Concerning the expansion (3.9) it is
easy to show

Lemma 3.2 The solutions ηq appearing in eq.(3.9) exist and are uniquely determined by the require-

ment ηq ≈ τ2q+1/3 as τ → −∞. Their asymptotic expansion for τ → −∞ is given by:

ηq(τ) = τ2q+1/3
∑
k,l

aklqγ
kτ−5k/3−8l/3, q = 0, 1, 2.. (3.11)

with the same aklq as in (3.5).

As before, one veri�es by induction that (3.11) with coe�cients ãklq is a consistent asymptotic ap-
proximation for the solutions eqns.(3.10a),(3.10b),etc. obeying ηq(τ) ≈ τ2q+1/3 as τ → −∞. The
coe�cients ãklq are determined by substituting the asymptotic series (3.11) for each ηq(τ) in eq.(3.9)
and requiring that (3.8) be veri�ed to all orders in τ for all ε and γ. Denoting t′ ≡ ε3/8τ , α′ ≡ γτ−5/3,
β′ ≡ τ−8/3 and by D̃ the action of the right hand side of eq.(3.8) on functions η(τ), one veri�es:

D̃(
∑
klq

τ1/3ε3q/4ãklqγ
kτ−5k/3−8l/3+2q) = τ(

∑
klq

b̃klq(t′)2q(α′)k(β′)l) = τ
∑ (−1)q(t′)2q

(2q + 1)!
(3.12)

with b̃klq analogous to bklq of eq.(3.7). Eqn.(3.12) allows a recurrent determination of the ãklq starting
from ã000 = 1. The equations determining from (3.12) the ãklq are identical to the corresponding ones
(3.7) for aklq if we replace t′ ↔ t, α′ ↔ α, β′ ↔ β. This shows that, indeed, ãklq ≡ aklq.
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We notice that the calculation of the asymptotic behaviour of ηq, q > 0 requires knowledge of the
behaviours of ηq′ for q′ < q, since ηq′ occurs in the equation for ηq (vgl.eq.(3.10c)). The relation
between outer and inner expansions is apparent if we substitute τ = tε−3/8, η = xε−1/8 in (3.5): one
obtains the sum over q of the series (3.11), i.e. the asymptotic behaviour (at large −τ) of the inner
expansion is the same as the low t behaviour of the outer expansion.
We now show that, indeed, the requirement concerning the asymptotic behaviour selects unique

solutions of (3.10a), (3.10b), (3.10c). We shall show directly that unique solutions exist admitting
(3.11) as asymptotic expansion, from which the previous statement will follow. Using the method of
the variation of parameters we set up an integral equation for the di�erence

uq(τ) ≡ ηq(τ)− ηq(K,L) (3.13)

where η
(K,L)
q is the truncation of (3.11) after (K,L) terms. For q = 0 the equation reads:

u0(τ) =

∫ τ

−∞
e−γ(τ−τ ′)(v1(τ)v2(τ ′)− v2(τ)v1(τ ′))(H(τ ′)− 3η

(K,L)
0 u(τ ′)2 − u(τ ′)3)dτ ′ (3.14)

where

H(τ) ≡ −(
d2η

(K,L)
0

dτ2
+ 2γ

dη
(K,L)
0

dτ
+ (η

(K,L)
0 )3 − τ) = γKτ−5K/3−8L/3O(γτ−2/3, τ−5/3) (3.15)

and

v1,2(τ)e−γτ ≈ e−γτ

31/4|τ |1/6
sin / cos(

3
√

3

4
τ4/3) (3.16)

are two linearly independent solutions of the equation:

d2v

dτ2
+ 2γ

dv

dτ
+ 3(η

(K,L)
0 )2v(τ) = 0

The approximation indicated in eq.(3.16) is related to the WKB approximation and is discussed in
a related context in Appendix C. One can show now by well-known methods that eq.(3.14) admits
of a unique solution in a space of bounded continuous functions on (−∞,−a), a > 0 with the norm
sup |τ5K/3+8L/3+1u(τ)|. This solution is obtained by iteration of (3.14) which also sets a bound on the
error made by truncating (3.11) at the (K,L) step: it is6 is O(γKτ−5K/3−8L/3−1). Since the order of
magnitude of the error is smaller than the last term included, this shows that the expansion (3.11) is
indeed asymptotic; for K,L = 0 we obtain the statement of Lemma 3.2 for q = 0.
For q > 0, the equations (3.10a),(3.10b) and their analogues are linear and so are the corresponding

integral equations (3.14); the solutions are given simply by the integral over (correspondingly modi�ed)
terms like H(τ) of (3.15); these terms contain solutions ηq′ with q′ < q. The error of truncation after
step (K,L) is now C(q)τ2q−1−5K/3−8L/3γK , with C(q) a (q−dependent) constant.

The complete left hand reference solution

Although it is intuitively clear that eqns.(3.5) and (3.9) (using the expansion (3.11)) are expansions of
the same solution of eqn.(3.1), it is not true that truncations at increasing K,L ful�ll (3.1) increasingly
well on the whole interval [−π/2, 0]. Following methods related to those of O'Malley [1974, ch.IV]
and Smith [1985, ch.VI], we show how the two expansions have to be combined to yield a uniform
approximation of the solution on [−π/2, 0]. We denote by:

x(K,L)
o ≡

∑
k≤K,l≤L

µkεlxkl(t), x
(Q)
i ≡ ε1/8

∑
q≤Q

ε3q/4ηq(τ) (3.17)

6if γ = 0, then K must be set equal to 0
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i.e. the (K,L)−, Q− truncations of the sums in (3.5),(3.9) and take a number d, 0 < d < 3/8. With
these we set up a (K,L,Q)-approximant to a solution of (3.1):

xa(t) ≡ χo(t, εd)x(K,L)
o (t) + χi(t, ε

d)x
(Q)
i (t) (3.18)

where χ0(t, εd) is of class C2, = 0 for t > −aεd and = 1 on [−π/2,−bεd], 0 < a < b; further for
−π/2 < t < 0,

χi(t, ε
d) = 1− χo(t, εd)

The function xa(t) is not a solution of (3.1) but is uniformly close for small µ and ε to such a solution

on −π/2 < t < 0. Indeed, substitution of x
(K,L)
o of (3.14) in (3.1) leaves terms of O((ε/t8/3)L+1 +

(µ/t5/3)K+1) uncompensated; x
(Q)
i veri�es (3.1) up to terms of O(ε3(Q+1)/4+3/8τ (2Q+3));thus, using the

notation of (3.6), for −π/2 < t < −aεd and −bεd < t < 0 in turn:

|D(x(K,L)
o )− sin t| = O(ε(L+1)(1−8d/3) + µ(K+1)(1−5d/3)),

|D(x
(Q)
i )− sin t| = O(εd(2Q+3))

(3.19)

On the interval (−bεd,−aεd) the functions χi, χo have derivatives of O(ε−d) and second derivatives
of O(ε−2d). These are multiplied by the di�erence of the (truncated) asymptotic expansions of xo(t),
xi(t) in this interval of t. As we have seen, the coe�cients aklq of these expansions are identical. The
di�erence may then be estimated to be:

∆(Q,K,L, t) ≡ |(xo − xi)(t)| ≤
∑

q>Q,k≤K,l≤L
aklqt

2q+1/3εkµl

+
∑
q≤Q

ε3q/4+1/8uq(τ)

where uq(τ) are the "`rest"' functions introduced in (3.13). Letting τ = t/ε3/8 this expression is
evaluated at t = εd to be:

∆(Q,K,L, εd) ≤ C(K,L)ε(2Q+1/3)d + C(Q)εL(1−8d/3)(µKε−5Kd/3)ε1/2−d

where C(K,L),C(Q) are constants which depend on the truncation points, but not on ε. Similar
estimates are valid for the �rst and second derivatives of the di�erence ∆(Q,K,L, t = εd). Clearly, it
is possible to choose Q,K,L such that even ∆ε−2d vanishes as ε → 0 (so as to take into account the
derivatives of the functions χi,χo in (3.18)) so that we may state, using the notation of (3.6):

Lemma 3.3 The approximant xa of (3.18) satis�es :

sup
−π/2<t<0

|D(xa)− sin t| < c0(K,L,Q)εc1P (3.20)

where P = min(K,L,Q) and c0, c1 are positive constants.

With this we can now show the existence of a solution XL(t) of (3.1) which "`interpolates"' between
the outer expansion (3.3) and the inner expansion (3.9): it is approximated by xa(t) uniformly on
−π/2 < t < 0. We write:

XL(t) = xa(t) + r(t)

and require XL(−π/2) = xa(−π/2), ẊL(−π/2) = ẋa(−π/2). Then r(t) is the solution of the integral
equation :

r(t) =
1

ε

∫ t

−π/2
exp(−µ

ε
(t′ − t))(v1(t′)v2(t)− v1(t)v2(t′))(D − sin t)(xa)(t) + 3xar

2 + r3)dt′ (3.21)
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where v1,2(t) exp(−µ/ε)(t + π/2) are solutions of the variational equation around xa(t) and D is the
Du�ng operator (3.6). We need here only rough bounds on these solutions. For t < −ε3/8−d (for some
0 < d < 3/8) these solutions are well approximated by "`WKB formulae"' and may be chosen such
that they have a limit as ε→ 0 (see Section 5.3 and Appendix C) for t = O(ε3/8). It turns out that, if
the solutions are chosen to be O(1) at t = 0, then they are O(ε1/16) at t = −π/2.The derivative with
respect to τ is then O(1) at t = 0 but O(ε−1/16) at t = −π/2. With this, using the bounds (3.20) one
shows in a well-known manner that, if the integer P is su�ciently large, eqn.(3.21) admits of a unique
solution of magnitude sup−π/2<t<0 |r(t)| < Cεc1P−1, which can be obtained by iteration. We can thus
conclude this section by:

Theorem 3.1 Eqn.(3.1) admits of a solution XL(t; ε;K,L,Q) uniformly approximated to O(εc1P−1)
on −π/2 < t < 0 by xa(t),eq.(3.18) and which obeys: XL(−π/2) = xa(−π/2), dXL/dt(−π/2) =
dxa/dt(−π/2).

The estimates above are very rough and distort the numerical simplicity of the solution XL: the
dependence on K,L,Q is numerically irrelevant: for all practical purposes

XL(t) = (sin t)1/3,−π/2 < t < −εd; = ε1/8η00(τ),−εd < t < 0 (3.22)

(with much freedom in the choice of 0 < d < 3/8).The fact that the proof relies on the possibility
to choose the integer P large originates from its ignoring the "`destructive"' action of the rapidly
oscillating functions v1,2(t), which is apparent in their "`WKB"' form.It is this very weak dependence
on the cuto� parameters (K,L,Q) (and thus on ε, µ) which justi�es calling XL(t) the (left hand)

reference solution. Its behavior near t = 0 is shown in Fig.2. The �gure is virtually independent of ε,µ
if time and magnitude are scaled appropriately.

3.2. Right hand reference solution

Choice of the inner expansion

We turn now to the interval 0 < t < π/2. Obviously the outer expansion (3.3) is formally the same,
with the same coe�cients aklq. Changing to the "`inner"' variables τ ,η we consider again an expansion
in terms of ε3/4 similar to (3.9) and expect the asymptotic form of its various terms to reproduce the
coe�cients aklq, appropriately rearranged. As will be apparent, the result is not the continuation to
τ > 0 of (3.9). There appears now an ambiguity in the de�nition of (3.9): the boundary condition
that the solutions ηq(τ) of (3.10a),(3.10b),etc. should behave like τ2q+1/3 as τ → ∞ does not select
a unique solution but is now obeyed by all solutions as a consequence of the damping term. The
damping time is 1/γ ≈ 1/(ε3/8 ln 1/ε), which is shorter than the τ -duration of O(1/ε3/8) of a quarter
period. Equations (3.10a), (3.10b), etc. admit however of solutions with almost no oscillations even at
times τ < 1/γ: we write to this end, in (3.10a)(i.e.q = 0), for some integer r and appending an index
R (for right hand side):

η0R(τ) =
r∑

k=0

η0kR(τ)γk + γr+1v(τ) ≡ η(r)
0R + u0(τ) (3.23)

where the η0kR(τ) (k = 0, 1, ..) are, in turn, the solutions behaving like τ1/3−5k/3 as τ →∞ of:

d2η00R

dτ2
+ η3

00R = τ (3.24a)

d2η01R

dτ2
+ 3η2

00Rη01R = −2
dη00R

dτ
, .... (3.24b)
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d2η02R

dτ2
+ 3η2

00Rη02R = −2
dη01R

dτ
− 3η00Rη

2
01R, ... (3.24c)

These equations are obtained by equating the coe�cients of various powers of γ after substituting
(3.23) in (3.10a). Now the condition on the behaviour for τ →∞ selects a unique solution because the
damping term is absent7. It is easy to verify that the algorithm to obtain iteratively the asymptotic
expansion of the solutions η0kR leads indeed to:

η0kR ≈
∑
l

akl0τ
1/3−5k/3−8l/3 (3.25)

with the akl0 of (3.5). The function u0(τ) is the solution of O(γr+1) of the equation:

d2u0

dτ2
+ 2γ

du0

dτ
+ 3(η

(r)
0 )2u0 + 3η

(r)
0 u2

0 + u3
0 = O(γr+1τ1/3−5(r+1)/3) (3.26)

Such a solution may be obtained by iteration, repeating the argument of (3.14).
The equations for

ηqR(τ) ≡ ηq0R(τ) + γηq1R(τ) + γ2ηq2R(τ) + ... (3.27)

are linear and similar to (3.24b),(3.24c), deduced from (3.10b),(3.10c) expanding in powers of γ and
setting appropriate boundary conditions at τ →∞.

The complete right hand reference solution

We can now repeat the argument of section 3.1 and obtain a solution for 0 < t < π/2 from a superpo-
sition like (3.18):

xaR(t) ≡ χoR(t, εd)x
(Q,K,L)
oR (t) + χiR(t, εd)x

(Q,K)
iR (t) (3.28)

where we have now appended an index R to the various terms,

x
(Q,K)
iR = ε1/8(η

(K)
0R (τ) + ε3q/4

∑
1≤q≤Q

η
(K)
qR (τ)) (3.29)

and η
(K)
qR are the sums (3.27) restricted to K terms. Repeating the steps following eqn.(3.19) we state

directly:

Lemma 3.4 The approximant xaR(t) of (3.28) satis�es:

sup
0<t<π/2

|D(xaR)− sin t| = O(εcRP ) (3.30)

with P = min(K,L,Q) and cR is an (ε - independent) constant.

We would like now to repeat the procedure leading to the integral equation (3.21): there is, however,
a di�culty because a direct analogy to (3.21) would require an integration backwards in time starting
at t = π/2. The exponential term increases in this case inde�nitely as ε→ 0 and precludes our setting
bounds on r(t). We have to start the integration at t = 0 and set :

XR(t) = xaR(t) + r(t), XR(0) = xiR(0),
dXR

dτ
(0) =

dxiR
dt

(0) (3.31)

The values xiR(0) are obtained from the solutions of the equations for ηqkR ,q ≤ Q, k ≤ K (cf.(3.24a),
(3.24b), (3.24c),...):

XR(0) = ε1/8
∑

0≤q≤Q,k≤K
ε3q/4γkηqkR(0) (3.32)

and similarly for dXR/dτ(0).We conclude this section by stating in analogy to Theorem 3.1:

7we do not give an explicit proof of this, because the paper contains many similar arguments
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Theorem 3.2 Eqn.(3.1) admits of a solution XR(t; ε;K,L,Q) uniformly approximated to O(εcRP )
on 0 < t < π/2 by xaR(t),eq.(3.28) and which obeys: XR(0) = xaR(0), (eq.(3.32)) dXR/dt(0) =
dxaR/dt(0).

The discontinuity at t = 0

We evaluate now XL(0), dXL(0)/dτ using (3.10). The correction r(t) obtained from (3.21) may be
made as small as one wishes, by letting the cuto� integers K,L,Q be large enough. Then it is true
that :

XL(0) = ε1/8
∑
q≤Q

ε3q/4ηq(0) ≡ ε1/8ηL(0) (3.33)

where the ηq(τ) are the uniquely de�ned solutions of (3.10a),(3.10b),(3.10c). These solutions may be
expanded in powers of γ, similarly to (3.23) (we append from now on an index L for symmetry):

ηq(τ) ≡ ηqL(τ) =
∑
k≤K

γkηqkL(τ) (3.34)

where the ηqkL verify the same equations (3.24a),(3.24b),(3.24c) with a boundary condition (i.e. a
prescribed asymptotic behaviour) at τ → −∞ instead of τ → ∞. It is easy8 to relate the solutions
corresponding to these two boundary conditions, which interchange τ and −τ . One veri�es:

η00L(τ) = −η00R(−τ), η01L(τ) = η01R(−τ)

η02L(τ) = −η02R(−τ), ...η10L(τ) = −η10R(−τ)
(3.35)

so that:
∆xi(0) = ε1/8

∑
q,k

ε3q/4γkηqkL(0)(1− (−1)k+1) = 2ε1/8
∑
q,k=2p

ε3q/4γkηqkL(0) (3.36)

and

∆
dxi
dt

(0) = 2ε1/8
∑

q,k=2p+1

ε3q/4γk
dηqkL
dτ

(0) (3.37)

Since η00L(0) 6= 0, it follows that XL(0) 6= XR(0), thus the two reference solutions are not the
continuation of each other. There is a jump of O(ε1/8) at t = 0 in going from the one to the other. The
derivatives have a smaller jump of O(ε1/8γ). We call these solutions "'reference"' solutions because
the motions which we study consist of small oscillations around them. Eilenberger and Schmidt call
them creeping solutions: the left hand solution XL(t) is the motion of a particle which stays at the
bottom of the moving potential well V (x) = x4/4−x sin t for all times away from t = 0; near t = 0, the
velocity of the minimum of the well at xm(t) = (sin t)1/3 becomes unbounded and the particle cannot
follow it: for t > 0 it will oscillate around the minimum with a larger amplitude (see Sect. 6.1). It
behaves as if it had received a kick at t = 09. In order that the particle follow the minimum of the
potential for t > 0 away from zero it has to start at t = 0 from (XR(0), dXR/dt(0)): this is the right
hand creeping solution: it will stay near the minimum until t ≈ 3π/2. In Fig.2 we show the appearance
of the reference solutions ηR, ηL near t = 0 (ηR,L = ε−1/8XR,L).

8invoking the uniqueness of the solutions
9However, there is no real "`kick"' and in my view the model proposed by the authors with a discontinuous force at
t = 0 is not a correct description of the appearance of the circle map for the Du�ng equation
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Figure 2: The solutions ηL,R(τ) = ε−1/8XL,R(t) near τ = 0

3.3. The Poincaré map

We de�ne the time-2π Poincaré map with respect to the reference solutions XL(t), XR(t) constructed
in the previous subsections. If we choose the same cuto� parameters K,L in both, it is true that (to
order εcP ):

XL(−π/2) = −XR(π/2),
dXL

dt
(−π/2) = −dXR

dt
(π/2)

As already noticed (cf.eq.(1.2)), if x(t) is a solution of eqn(3.1), then −x(t−π) is also a solution. Thus
the solution starting at t = π/2 with the values −XL(−π/2), −dXL/dt(−π/2), is simply −XL(t− π),
which we denote by XL1(t). This solution is a "`reference"' solution up to t = π where it is replaced
by XR1(t) ≡ −XR(t− π) . We write, for a solution x(t) of (3.1):

x(t) ≡ XL(t) + vL(t),−π/2 ≤ t < 0, x(t) ≡ XR(t) + vR(t), 0 ≤ t < π/2

x(t) ≡ XL1(t) + vL1(t), π/2 ≤ t < π, x(t) ≡ XR1(t) + vR1(t), π ≤ t < 3π/2

x(t) ≡ XL2(t) + vL2(t), 3π/2 ≤ t < 2π , etc.

(3.38)

We de�ne the time-2π Poincaré map P0 by:

P0 : (vL(−π/2),
dvL
dt

(−π/2))⇒ (vL2(3π/2),
dvL2

dt
(3π/2)) (3.39)

If x(t) is the unique periodic solution of (3.1) then it must be odd periodic and leads thus also to a
�xed point of the half-period Poincaré map:

P : (vL(−π/2),
dvL
dt

(−π/2))⇒ (−vL1(π/2),−dvL1

dt
(π/2)) (3.40)

The symmetry t→ t+ π, x→ −x implies that, in fact:

P0 = P ◦ P (3.41)

Indeed, under P the point Pi(x(−π/2), dx/dt(−π/2)) corresponding to a solution x(t), moves to
Pf (−x(π/2),−dx/dt(π/2)); Also, the point P 1

i (x1(−π/2), dx1/dt(−π/2)) corresponding to the solution
x1(t) ≡ −x(t+π) moves to P 1

f (−x1(π/2),−dx1/dt(π/2)). But x1(−π/2) = −x(π/2), dx1/dt(−π/2) =

−dx/dt(π/2), i.e. P 1
i ≡ Pf and −x1(π/2) = x(3π/2), −dx1/dt(π/2) = dx/dt(3π/2). Therefore P 1

f is
at the same time the image of the original point Pi under P ◦ P and its image under P0. This shows
the validity of (3.41). Now,the mismatch at t = π/2 between −XL(t− π/2) and XR(t) may be made
arbitrarily small, simply by increasing the truncation orders, according to Theorems 3.1 and 3.2. We
shall ignore this small correction in the following and regard P as being simply:

P(ε, µ) : (vL(−π/2), dvL/dt(−π/2))⇒ (vR(π/2), dvR/dt(π/2)) (3.42)

16



In the next section, the de�nition will be further modi�ed, by introducing another independent (time)
variable.

4. The Invariant Sets of P(ε, µ)

4.1. A characterisation of possible invariant sets

The function vL(t), de�ned as the departure of a solution x(t) from the reference function XL(t)
(cf.eq.(3.38)) obeys:

ε
d2vL
dt2

+ 2µ
dvL
dt

+ 3X2
LvL + 3XLv

2
L + v3

L = 0 (4.1)

A similar equation holds for the function vR(t), eq.(3.38), the departure of x(t) from the right hand
side (t > 0) reference solution XR(t). It is convenient to introduce new independent variables for t < 0,
t > 0, in turn:

θL = 31/2ε−1/2

∫ −τ0ε3/8
t

XL(t′)dt′, θR = 31/2ε−1/2

∫ t

τ0ε3/8
XR(t′)dt′ (4.2)

for a τ0 such that XL(τ), XR(τ) 6= 0 for τ < −τ0, τ > τ0, in turn. In this section we prove the
following:

Theorem 4.1 If the Poincaré map P(ε, µ) has invariant sets, then, for ε su�ciently small, they are

contained in a rectangle:

D0 : |vL(−π/2)|,
∣∣∣∣dvLdθL

(−π/2)

∣∣∣∣ < Mε3/16+κπ/2 (4.3)

with (cf.eq.(1.21))

κ = κ(ε) =
µ

ε ln(1/ε)
=

3

2

∆

ln Γ
(4.4)

and M independent of ε .

With this de�nition of κ(ε), the "`damping factor"' reads:

exp(−∆t) = exp(−µ
ε
t) = εκt (4.5)

Since (as will turn out) bifurcations occur when κ = O(1), we shall use this latter notation from now
on.

4.2. A qualitative argument

To explain intuitively the origin of this theorem, we notice �rst that, as a consequence of Lemma 2.2,
all solutions of (4.1) must obey eventually

|vL(−π/2)| < KεCκπ/4 |dvL/dt(−π/2)| < Kε−1/2εCκπ/4 (4.6)

with K,C of (2.12). Indeed, the reference solution XL(t) obeys condition 2.1 of Sect. 2.2 on an
interval [−3π/4,−π/4]: there XL(t) ≈ (sin t)1/3 (cf. eq.(3.22)) and one can choose a, b ≈ 2−1/6. Thus,
invariant sets can be only subsets of the rectangle (4.6). Using the variable θL, eqn.(4.2), the last
inequality is transformed into (with a rede�nition of K):

|dvL/dθL(−π/2)| < KεCκπ/4.
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With this in mind, we perform a change to a new dependent variable wL(θL) through:

vL(t) =
wL(θL)

(−XL)1/2
εκ(t+π/2)εα (4.7)

where α > 0 is for the time being unspeci�ed. Clearly, vL(−π/2) = wL(θ(−π/2))εα. The function wL
veri�es for t < 0:

d2wL
dθ2
L

+ wL(1 + gL(θL))− w2
Lh(θL) +

h2(θL)

3
w3
L = 0 (4.8)

where:

h(θL) =
εκ(t+π/2)εα

(−XL)3/2
(4.9)

gL(θL) =
ε

4

(dXL/dt)
2

X4
L

− ε

6

d2XL/dt
2

X3
L

− κ2ε
ln2(1/ε)

3X2
L

(4.10)

Since (−XL)(t) ≈ (sin t)1/3 for t < −τ0ε
3/8, one checks that gL(θL) ≈ ε(t−8/3 + t−2/3 ln2(1/ε)) and is

thus O(1) at t = O(ε3/8), drops o� at larger |t| and becomes O(ε ln2(1/ε)) at t = −π/2. The function
h(θL) is not monotonical but has a minimum at a t of O(1/(κ ln ε)) where it is O(εκπ/2+α(κ ln(1/ε))1/2).
It is O(1) at t = O(εκπ+2α), if κπ+2α < 3/8 but stays otherwise o(1) down to t = O(ε3/8). We denote:

p ≡ min

(
κπ + 2α

3
,
1

8

)
(4.11)

so that h(θL) is O(1) at t ≈ ε3p,if p < 1/8. The following is a qualitative argument for :

Statement 4.1 If p < 1/8, the order of magnitude of vR(π/2) is εα+κπ (i.e. smaller by a factor εκπ

than vL(−π/2)). If p = 1/8, then vR(π/2) is O(ε3/16+κπ/2) and this order remains unchanged in the

following half periods.

The essential point in the argument is that the magnitude of the jump of the "`reference"' solutions
XL(t), XR(t) is O(ε1/8). Eqn.(4.8) describes an oscillatory motion in a time(θ)-dependent potential
which has a single minimum at wL = 0. If |wL| < const at t = −π/2, one expects that this motion
remains bounded, uniformly with respect to ε, at least as long as |h| < const, i.e. down to times of
O(ε3p). At such values of t, according to (4.7), vL(t) is then of O(εp). The order of magnitude of
vL(t) is likely to stay unchanged down to t = 0; there, the reference solution is changed from XL(t) to
XR(t), which means a shift of O(ε1/8). If p < 1/8. this shift is unnoticed: the function vR(t) has the
same order of magnitude as vL(t) and we shall show that this is preserved up to t of O(ε3p). Using a
change of variables similar to (4.7):

vR(t) =
wR(θR)

X
1/2
R

εκt+3p/2 (4.12)

we verify that wR(θR) obeys:

d2wR
dθ2
R

+ wR(1 + gR(θR)) + w2
Rk(θR) +

w3
R

3
k2(θR) = 0 (4.13)

with gR(θ : R) analogous to gL(θ) of (4.6) and

k(θR) =
εκt+3p/2

X
3/2
R (t)

(4.14)
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The function k(θR) is monotonically decreasing from O(ε3p/2−3/16) at t = O(ε3/8) to O(εκπ/2+3p/2) at
t = π/2. Now, if at t = O(ε3p), vR(t) = O(εp), it follows that wR(θR) is O(1) there and, since the
motion described by (4.13) is oscillatory and - hopefully - bounded, it stays so up to t = π/2; there,
consequently, vR(π/2) = O(εκπ/2+3p/2). This is O(εκπ+α) if p < 1/8. Thus, in this situation we start
the next half period with a value of vL(−π/2 + π) damped with respect to the original one by a factor
εκπ. As announced in Statement 4.1, if p < 1/8, the new half cycle starts with a value of α, increased
by κπ. After a �nite number of cycles, α will be such that the inequality p < 1/8 is no longer valid.
When this occurs, the magnitude of vL(t) at t = 0 is o(ε1/8) and, since the jump of the reference
solutions is O(ε1/8), vR(t) is also of O(ε1/8). Then, the change of variables (4.12) with p = 1/8 shows
that wR(θ) is O(1) when t is of O(ε3/8) and it follows that vR(π/2) is of O(ε3p/2) = O(εκπ/2+3/16), as
stated in Theorem 4.1.
To conclude, if we start with a value α such that p < 1/8, i.e.α < 3/16 − κπ/2, it will increase in

the following half cycles until it gets over this bound; in the succeeding half cycles it does not get any
more below it. Indeed, if we start with α ≥ 3/16 − κπ/2 ≡ α0, h(t) is O(εs), with s ≥ 0 at (−t) of
O(ε3/8) and v(t) is there of O(ε1/8+s) : it is thus at least a factor εs smaller than the jump of the
reference solutions. The motion continues at t > 0 with oscillations of O(ε1/8) around the reference

XR(t); their amplitude decreases gradually (due to the factor X
−1/2
R ) and, as a consequence of the

damping, becomes O(εκπ/2+3/16) at t = π/2. Thus, once solutions are "`trapped"' in a rectangle (4.3),
they stay there for all time.
For a proof of Theorem 4.1 (and of Statement 4.1), one has to place indeed bounds independent of ε

on the magnitude of the solutions wL,R(θ) of eqns.(4.8),(4.11) and also justify the preservation of the
magnitude of the solutions in the transition region (−τ0ε

p ,τ0ε
p).

4.3. The interval −π/2 < t < −τ0ε
3p

We show that, if the energy of the oscillations of wL is bounded at t = −π/2, it stays bounded up to
t = −τ0ε

3p, uniformly with respect to ε, if τ0 is su�ciently large. To this end, we consider the energy
associated with (4.8):

E(θ) =
1

2

(
dwL
dθL

)2

+
1

2
w2
L

[
(1 + g(θL))− 2

3
wLh(θL) +

1

6
w2
Lh(θL)2

]
(4.15)

The quantity in square brackets is positive de�nite and larger than 1/3 + g(θL), so that (g(θL) > 0):

|wL(θL)| <
√

6E(θL),

∣∣∣∣dwLdθL
(θL)

∣∣∣∣ <√2E(θL) (4.16)

It follows that, if E > 1 and for those values of θL for which |h(θL)| < 1∣∣∣∣ dEdθL
∣∣∣∣ =

∣∣∣∣12w2
L

[
dg

dθL
− 2

3
wL

dh

dθL
+

1

3
w2
Lh

dh

dθL

]∣∣∣∣ < 3E(θL)2

(∣∣∣∣ dgdθL
∣∣∣∣+ 6

∣∣∣∣ dhdθL
∣∣∣∣) (4.17)

This inequality implies that, if the energy at −π/2 is bounded by a number E0 and if τ0L(E0) is such
that h(τ0Lε

3p) and g(τ0Lε
3p) are so small that:

1

E0
> 3g(τ0Lε

3p) + 6h(τ0Lε
3p)

then E(τ0Lε
3p) is bounded. These inequalities imply that |vL(τ0Lε

3p)|,
∣∣dvL/dθL(τ0Lε

3p)
∣∣ are bounded

by C(E0)εp at these values of t. The constant increases as E0 increases.
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4.4. The interval (−τ0Lε
3p, τ0Rε

3p)

Changing variables to
t = σε1/2−p, vL = V εp (4.18)

one transforms (4.1) to:

d2V

dσ2
+ 2κε1/2−p ln

(
1

ε

)
dV

dσ
+ 3(X2

Lε
−2p)V + 3(XLε

−p)V 2 + V 3 = 0 (4.19)

For t in (−τ0Lε
3p, 0), it is true that |XLε

−p| < τ
1/3
0L . Also, one veri�es that, at t = −τ0Lε

3p, |dV/dσ|
is O(1). Thus the energy associated to (4.19) is bounded by a constant at t = −τ0Lε

3p. Further, it is
true that, since the potential function is bounded from below by V 4/6,

|V (σ)| < 2E1/4 (4.20)

Then, assuming E > 1, we may bound

dE

dσ
< 8E3/4

(
3

2

∣∣∣∣d(XLε
−p)2

dσ

∣∣∣∣+

∣∣∣∣dXLε
−p

dσ

∣∣∣∣)
and, integrating this inequality from −τ0Lε

3p to 0:10

E(0)1/4 < E(−τ0Lε
3p)1/4 + 2

(
3

2
τ

2/3
0L + τ

1/3
0L

)
(4.21)

It follows that both |V | and |dV/dσ| are bounded at t = 0 and therefore:

|vL(0)| < Cεp,

∣∣∣∣dvLdσ (0)

∣∣∣∣ < Cεp (4.22)

With our de�nition (4.11) of p, the departure vR(t) of x(t) = XL(t)+vL(t) from XR(t) is also of O(εp)
and the same is true for dvR/dσ(0). With the change of variables (4.18), with vL replaced by vR,
we obtain an equation identical to (4.19) with XR(t) instead of XL(t). The same argument as before
shows that the energy associated to it is bounded at t = τ0Rε

3p, for some (at this stage arbitrary)
choice of τ0R. It follows that |vR(τ0Rε

3p)|,|dvR/dθR(τ0Rε
3p)| are bounded by C(τ0R)εp. Clearly, the

value of C(τ0R) increases with τ0R.

4.5. The interval (ε3p, εq), q < 3p

In this interval εκt ≈ 1 and we may write:

k(θR) ≈ 1

τ
1/2
0R

(
θ0R

θR

)3/8

, θ0R ≈
3
√

3

4
ε4p−1/2τ

4/3
0R (4.23)

The range of values of θR corresponding to this interval may become arbitrarily large if ε is chosen
su�ciently small. We de�ne wR through equation (4.12): it follows from the previous paragraph that
|wR|, dwR/dθR are O(1) at t = ε3p. We shall show that wR and dwR/dθR stay bounded in the whole
interval (ε3p, εq). wR(θ) obeys eqn. (4.13) and by analogy to (4.15), with the same notation for the
energy, but the replacement of h(θL) with −k(θR) we may write:

dE

dθR
=

1

2
w2
R

dgR
dθR

+
w3
R

3

dk

dθR
+

1

6
w4
Rk

dk

dθR
(4.24)

10if p = 1/8 there are also constant contributions of the upper limit t=0; they do not play a signi�cant part
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We cannot repeat the argument of paragraph 4.3 because, if we try to increase the value of θ0R to
ensure an inequality like (4.17) we increase at the same time the bound on the possible energies (see
the end of paragraph 4.4). One seems to need a rather long detour.
In (4.23), dgR/dθR, dk/dθR are strictly negative, so that the only term which may change sign is

the middle one with w3
R. Thus:

dE

dθR
<

1

3
|w3
R|
∣∣∣∣ dkdθR

∣∣∣∣ (4.25)

We can use now a bound on wR similar to (4.16) to derive the inequality11:

dE

dθR
< CE3/2(θR)

∣∣∣∣ dkdθR
∣∣∣∣ (4.26)

Unfortunately, we cannot draw any conclusions about the boundedness of E for large θR diretly from
(4.26) unless some other restriction on E(θR) holds. We shall show in Appendix A that, in fact, E(θR)

increases for large θR at most like θ
3/4−s
R for some s > 0, i.e. for θR in this time interval:

E(θR) < const

(
θR
θ0R

)3/4−s
(4.27)

Using this in (4.26) we obtain:

dE

dθR
< C

(
θR
θ0R

)9/8−3s/2(θ0R

θR

)3/8 1

θR
(4.28)

which leads by integration to an improved bound on E(θR):

E(θR)− E(θ0R) < C

(
θR
θ0R

)3/4−9s/4

(4.29)

Using this bound again in (4.26), we can further improve (4.29) and after a �nite number of such steps,
the power of (θR/θ0R) decreases enough so that we can state:

E(θR) < const (4.30)

for all θR in the time interval (ε3p, εq).

4.6. The interval (εq, π/2)

This time integration of (4.26) leads directly to the desired bound:

1√
E(θR)

>
1√

E(θR(εq))
− 2C(k(θR(εq))− k(θR)) (4.31)

we can always choose ε so small that the right hand side be positive 12.This leads then to an upper
bound on E(θR) and thus on E(π/2), as announced.

11capital C denotes a constant which needs not be speci�ed in more detail
12the value E(θR(εq)) is independent of ε, if ε is su�ciently small, according to paragraph 4.5
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4.7. Summary

The important point concerning the bounds which were established above is that they are independent
of ε, provided only ε is su�ciently small. We can now review the qualitative argument for Theorem
4.1 given in paragraph 4.2, whose gaps have now been �lled in. As we have seen all solutions reach
at some time nπ/2 the interior of a rectangle D of size KεCκπ/4 around the reference solution 13 for
a certain constant K. If there are invariant sets, they are contained in this rectangle for all times
mπ/2,m = −∞..∞. If Cκπ/4 > 3/16 − κπ/2 ≡ α0 then the argument of paragraph 4.2 shows that
those solutions that are in D at, say, t = −π/2, are contained at t = π/2 in the rectangle D0 of size
M1ε

κπ/2+3/16, eq.(4.3) which proves Theorem 4.1 for this situation. If the inequality is not satis�ed,
we may �nd a constant M̄1 so that the solutions are contained at t = π/2 in a rectangle D1 of size
M̄1ε

κ(π+Cπ/4), as argued in paragraph 4.2. If κ(Cπ/4 + π) > α0, then the solutions reach at t = 3π/2
the interior of D0 and the proof stops at this stage. If not, we �nd M̄2 and a rectangle D2 of size
M̄2ε

κ(Cπ/4+2π) so that the solutions are contained in it at t = 3π/2. After a �nite number of steps ,
the bound α0 will be overcome and this ends the proof of Theorem 4.1.
Independently of the existence of invariant sets, the arguments of this section lead to the following:

Corollary 4.1 Consider the solutions vL(t) starting at t = −π/2 in the rectangle (4.3) of Theorem

4.1 and the corresponding functions wL(θ), wR(θ) de�ned in (4.7) and (4.12). There exists then a

constant M , indepedent of ε if ε is su�ciently small, so that

|wL,R(θL,R)|,
∣∣∣∣dwL,RdθL,R

∣∣∣∣ < M (4.32)

for t(θL,R) in (−π/2,−τ0ε
3/8) and (τ0ε

3/8π/2),in turn.

This remark is used in the next sections to justify the averaging procedures employed there (see Arnold
[1978, �52]).

5. The Left Hand Side Poincaré Map

5.1. The left hand quarter period map

In this and the next section we derive approximations to the half period Poincaré map PL restricted
to the rectangle (4.3) of Theorem 4.1. We consider �rst the quarter period Poincaré map:

PL : (vL(−π/2),
dvL
dθL

(−π/2))⇒ (vL(0),
dvL
dτ

(0)) (5.1)

where τ is the "`boundary layer"' time variable introduced in Section 1, eq.(1.18),θL is de�ned in
eq.(4.2) and vL is a solution of eqn.(4.1) for −π/2 < t < 0. Note:in this section we shall drop the

index "`L"' on the variable θ because θR, eq.(4.2),used for t > 0, does not appear at all. Also, for ease
of notation, we write g(θ) ≡ gL(θ) of (4.10). Instead of the rectangle eq.(4.3) we may consider a disk
of the same magnitude and parametrize:

vL(−π/2) = ε3/16+κπ/2Λ cos Ψ0

dvL
dθ

(−π/2) = −ε3/16+κπ/2Λ sin Ψ0 (5.2)

With the change of dependent variables (4.7), we are led to eq.(4.8) where now α = 3/16 + κπ/2.
The function h(θ) of (4.9) is O(ε3/16+κπ/2) at t = −π/2 and O(εκπ) at t = O(ε3/8). In an interval

13if the variable θL,R is used for the time
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IL ≡ (−Cε,−τ0ε
3/8), where Cε → 0 when ε → 0, we can set sin t ≈ t, so that eq.(4.2) implies

t ≈ −ε3/8(−θ)3/4, and it follows that, for |τ | su�ciently large:

h(θ) ≡ εκ(t+π/2)εκπ/2+3/16

(−XL)3/2
≈ εκπ

(
−θ0

−θ

)3/8

, θ0 = −33/2

4
(5.3)

For14 ε3/8 = 0.003, Fig.3 shows the appearance of h(t); in the range of values of κ of interest (see
below), the function g(t) is much smaller than h(t) (at t = −10× ε3/8 it is ≈ 8.5× 10−5).
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Figure 3: The function h(θ) for relevant values of the parameter κ

5.2. The interval (−π/2,−ε3/8−δ)

The in�uence of the nonlinear terms of (4.8) can be analyzed due to the smallness of the function
h(θ) in a manner inspired by and related to the averaging method of Bogolyubov and Mitropol-
sky[1961](especially chapter V of this reference). We use new dependent variables R(θ) and φ(θ):

wL(θ) = R(θ) cos(θ − θ0 + φ(θ)) (5.4a)

dwL
dθ

= −R(θ) sin(θ − θ0 + φ(θ)) (5.4b)

which transform (4.8) into the pair of equations:

dR

dθ
=

1

2
g(θ)R(θ) sin(2z)− 1

4
h(θ)R(θ)2(sin z + sin(3z))

+
1

12
h(θ)2R(θ)3(sin(2z) +

1

2
sin(4z))

(5.5a)

dφ

dθ
=

1

2
g(θ)(1 + cos(2z))− 1

4
h(θ)R(θ)(3 cos z + cos(3z))

+ h(θ)2R(θ)2(
3

2
+ 2 cos(2z) +

1

2
cos(4z))

(5.5b)

with
z(θ) = θ − θ0 + φ(θ) (5.6)

According to section 4.1, the function R(θ) is bounded independently of ε for θ corresponding to t in
an interval (−π/2,−τ0ε

3/8). Due to the smallness of h(θ) and g(θ), we expect both R(θ) and φ(θ)
to have a slow variation compared to θ; one might be tempted to replace eqs.(5.5a),(5.5b) with their

14The quantity ε3/8 measures the width of the boundary layer; it corresponds to ε = 0.187× 10−6
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averages with respect to θ (or with respect to z). The fact that h(θ) is not integrable forbids however
this simple averaging 15. Following Bogolyubov & Mitropolski [1961], we perform a transformation of
the dependent variables to new variables by:

R1(θ) = R(θ)− 1

4
h(θ)R(θ)2(cos z +

1

3
cos(3z)) (5.7a)

φ1(θ) = φ(θ) +
1

4
h(θ)R(θ)(3 sin z +

1

3
sin(3z)) (5.7b)

The jacobian of this transformation is 1 +O(h) so that the transformation is locally invertible if ε and
thus h(θ), are small enough. From the boundedness of R(θ) established in Section 4.1 it follows that
R1(θ) is also bounded, independently of ε. Moreover, one can show that the transformation (5.7a),
(5.7b) is in fact invertible at �xed θ on its domain of values in the (R,φ) plane if h(θ) is su�ciently
small. This question is discussed in Appendix B. The change of variables (5.7a),(5.7b) "`removes"' the
terms of O(h) in eqns.(5.5a),(5.5b): the equations for R1(θ), φ1(θ) read:

dR1(θ)

dθ
=

1

2
R(θ)g(θ) sin(2z) +R(θ)3h(θ)2[

19

96
sin(2z) +

1

12
sin(4z)

− 1

96
sin(6z)] +O(h3, hg,

dh

dθ
)

(5.8a)

dφ1(θ)

dθ
=

1

2
g(θ)(1 + cos(2z)) +R(θ)2h(θ)2[− 7

24
− 5

16
cos(2z)

− 1

24
cos(4z)− 1

48
cos(6z)] +O(h3, hg,

dh

dθ
)

(5.8b)

In these equations it is understood that R(θ),φ(θ) are replaced by functions of R1(θ),φ1(θ) obtained
by the inversion of eqns.(5.7a),(5.7b). To �rst order in h(θ) the latter reads:

R(θ) = R1(θ) +
1

4
h(θ)R1(θ)2(cos z1 +

1

3
cos(3z1)) +O(h2) (5.9a)

φ(θ) = φ1(θ)− 1

4
h(θ)R1(θ)(3 sin z1 +

1

3
sin(3z1)) +O(h2) (5.9b)

with
z1 = θ − θ0 + φ1(θ) (5.10)

Since h(θ)2 ≈ ε2κπ(θ0/θ)
3/4 is again not integrable, one cannot draw directly conclusions about the

behaviour of R1(θ) and φ1(θ) over large intervals of θ. An attempt to remove the terms in h(θ)2 can
achieve this only partially: the equation for φ1(θ) contains to orders h(θ)2 and g(θ) "`secular"' terms,
i.e. terms which have nonzero average and which cannot be removed by a further transformation. It
is relevant to notice that, in order to remove terms of higher order in eqns. (5.8a),(5.8b), one does not
need to resort to the explicit inversion, eqns(5.9a),(5.9b), but regard R(R1, φ1), φ(R1, φ1) as known
functions of θ, whose derivatives are given by (5.5a),(5.5b). With this, we introduce new variables
R2, φ2 by:

R2 = R1 +R(θ)3h(θ)2(
19

192
cos(2z) +

1

48
cos(4z)− 1

192
cos(6z)) (5.11a)

φ2 = φ1 +R(θ)2h(θ)2(
5

32
sin(2z) +

1

96
sin(4z) +

1

288
sin 6z) (5.11b)

As follows from Appendix B, this transformation is invertible under the same conditions as the one of
eqns.(5.7a), (5.7b). Using (5.9a)(5.9b) for R(θ), φ(θ), it is true that:

R1 = R2 +O(h2) φ1 = φ2 +O(h2) (5.12)

15as will be apparent the corrections may not be �nite
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Use of (5.5a),(5.5b) for dR/dθ, dφ/dθ and of (5.8a),(5.8b) for dR1/dθ, dφ1/dθ leads to:

dR2(θ)

dθ
=

1

2
g(θ)R(θ) sin(2z) +O(h3,

dh

dθ
, gh) (5.13a)

dφ2(θ)

dθ
= − 7

24
R(θ)2h(θ)2 +

g(θ)

2
+

1

2
g(θ) cos(2z) +O(h3,

dh

dθ
, gh) (5.13b)

It is convenient to perform a further transformation:

R3 = R2 +
1

4
gR cos(2z) φ3 = φ2 −

1

4
g sin(2z) (5.14)

which removes the "`nonsecular"' terms in g(θ) in (5.13a), (5.13b). This transformation brings addi-
tional terms in the equations corresponding to (5.13a),(5.13b), proportional to dg/dθ and g(θ)2. The
former is dominant and, when its absolute value is integrated, leads to a term of O(g(θ)). Now∫ θ(−τ0ε3/8)

θ(−π/2)
h(θ)3dθ = O(ε3κπ/2+1/16/ ln(1/ε))

and vanishes as ε→ 0 so that we conclude from eqns.(5.13a),(5.13b),(5.14) that:

R3(θ) = R30 +O(

∫ θ

θ(−π/2)
h(θ′)3dθ′) +O(g(θ)) (5.15a)

φ3(θ) = φ30 −
7

24

∫ θ

θ(−π/2)
R(θ′)2h(θ′)2dθ′+ 1

2

∫ θ

θ(−π/2)
g(θ′)dθ′

+O(

∫ θ

θ(−π/2)
h(θ′)3dθ′) +O(g(θ))

(5.15b)

where R30, φ30 are transformations of the initial conditions at t = −π/2 in (5.2). If, recalling
(5.9a),(5.9b),(5.12) we invert the transformations (5.11a),(5.11b) and (5.7a), (5.7b) we obtain, using
the notations in (5.2):

R(θ) = Λ +O

(∫ θ

θ(−π/2)
h(θ′)3dθ′

)
+O(g(θ)) +O(h(θ)) (5.16a)

φ(θ) = Ψ0 −
7

24

∫ θ

θ(−π/2)
R2

20h(θ′)2dθ′+ 1

2

∫ θ

θ(−π/2)
g(θ′)dθ′

+O

(∫ θ

θ(−π/2)
h(θ′)3dθ′

)
+O(g(θ)) +O(h(θ))

(5.16b)

In eq.(5.16a) we see that, up to possible oscillations of O(h(θ)), R(θ) stays constant at its initial value
at t = −π/2 down to t = O(ε3/8−δ), where the second term containing g(θ) may become relevant.
Evaluation of the integral in the �rst term of (5.16b) leads to:

ΦL ≡ −
7

24

∫ θ(−τ0ε3/8)

θ(−π/2)
R2

20h(θ)2dθ = O(
εκπ

γ1/3κ2/3(ln(1
ε )2/3)

) (5.17)

As it will become apparent, bifurcations occur when εκπ/γ1/3 = O(1) so that this contribution to the
phase due to nonlinear terms (these contain h(θ)) is important: it decays indeed like 1/(ln(1/ε))2/3,
but this is very slow. The bounded function of κ and ε which multiplies the term under the O()
sign has a nontrivial behaviour and is shown in Fig.4;the magnitude of the phase variation implied by
(5.16b) depends on the value of κ, i.e. of the damping: at ε3/8 = 0.003, for κ = 0.04 and Λ = 1 it is
0.46 rad, but at κ = 0.02 it measures 2.01 rad. The second term in (5.16b) is related to the linear part
of (4.8) and brings a constant contribution at t = −τ0ε

3/8. We conclude this discussion by stating:
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Figure 4: The dependence on ε of the factor multiplying the O() term in (5.17)

Lemma 5.1 The solution of (5.4a),(5.4b) with the initial conditions R(−π/2) = Λ, φ(−π/2) = Ψ0 is

given by eqns.(5.16a), (5.16b) for t in (−π/2,−τ0ε
3/8).

In eq.(5.16a),(5.16b), the terms containing g(θ) originate in the linear part of eq.(4.8): we expect thus
that if we solve the linear part of (4.8) (for a function w̃L(θ)):

d2w̃L(θ)

dθ2
+ w̃L(θ)(1 + g(θ)) = 0 (5.18)

with the initial conditions:

w̃L(θ(−π/2)) = Λ cos(Ψ0 + ΦL),
dw̃L
dθ

(θ(−π/2)) = −Λ sin(Ψ0 + ΦL) (5.19)

with ΦL of (5.17) we obtain for t close to −τ0ε
3/8 values which di�er to O(h) from those of the complete

equation. With other words, the only e�ect of the nonlinear terms in (4.8) is the addition of a phase ΦL

to the simple harmonic evolution. For clarity, we do not expect that the solution of (5.18) with condition
(5.19) approximates the solution of (4.8) over the whole interval (−π/2,−τ0ε

3/8); only the values near
t = −τ0ε

3/8 are presumably well approximated. To render this precise, we analyze (5.18) using the same
transformations (5.4a),(5.4b) to new variables - called R̃, φ̃ - which obey equations like (5.5a),(5.5b)
with h(θ) = 0. Performing the change of variables (5.14) leads in analogy to (5.16a),(5.16b) to:

R̃1(θ) = Λ +O(g(θ)), φ̃1(θ) = Ψ0 + ΦL +
1

2

∫ θ

θ(−π/2)
g(θ′)dθ′+O(g(θ)) (5.20)

Comparison with (5.16a),(5.16b) shows that:

|R(θ)− R̃(θ)| = O(g(θ)) +O(h(θ)) +O(

∫ θ

θ(−π/2)
h(θ′)3dθ′) (5.21a)

|φ(θ)− φ̃(θ)| = O(

∫ θ

θ(−π/2)
h(θ′)3dθ′) +O(g(θ)) +O(h(θ))

+
7

24

∫ −θ(τ0ε3/8)

θ
Λ2h(θ′)2dθ′

(5.21b)

If θ is su�ciently close to θ0 ≡ θ(−τ0ε
3/8), e.g. corresponding to t = −ε3/8−δ for δ su�ciently small,

but nonzero, then all terms on the right hand side behave like positive powers of ε. As is easily
veri�ed, using (5.3) and (4.10), these are (up to logarithmic terms) in (5.21b): ε3κπ/2+1/16, ε8δ/3,
εκπ+δ/2, ε2κπ−δ/3, in turn. There is some freedom in the choice of δ: a simple choice is δ = 3κπ/8
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where the O(g(θ)) term is dominant and the di�erences (5.21a),(5.21b) are of O(εκπ) .If κ is large, this
choice becomes inappropriate: if e.g. κπ > 1, the τ -time interval of O(ε−δ) is with this choice larger
than the damping time 1/γ. We are interested in τ -intervals slightly larger than the O(1) scale but
much smaller than ε−3/8. We write (with some arbitrariness)

δ =
3r

8
r = min(κπ,

1

2
) (5.22)

With this, for τ(θ) < ε−δ:

|wL(θ)− w̃L(θ)|, |dwL(θ)

dθ
− dw̃L(θ)

dθ
| = O(εr) (5.23)

Now, the variational equation around the reference solution XL(t) to the Du�ng equation (3.1)
(or(1.8)) reads:

ε
d2ṽL
dt2

+ 2µ
dṽL
dt

+ 3XL(t)2ṽL = 0 (5.24)

With the same Liouville transformation (4.7) we may write for its solution :

ṽL(t) = εκπ/2+3/16 w̃L(t)εκ(t+π/2)

(−XL(t))1/2
(5.25)

where w̃L(t(θ)) obeys (5.18) with initial conditons (5.19). Since XL(t) ≈ −t1/3, one veri�es from
(5.25) that, for t ≈ ε3/8−δ, both vL(t) and ṽL(t) are of O(εκπ+1/8+δ/6). It is convenient to revert to the
"`time"' τ and to variables uL(τ) and ũL(τ) used in the boundary layer region with the scaling (1.18):

uL(τ) ≡ ε−1/8v(t), ũL(τ) ≡ ε−1/8ṽL(t), t = ε3/8τ (5.26)

Since for small t, θ ≈ −τ4/3 both duL/dτ , dũL/dτ are of O(εκπ−δ/6) at t = −ε3/8−δ. Using (5.23), we
conclude that, for such values of t (τ = ε−δ):

|uL(τ)− ũL(τ)| = O(εκπ+r+δ/6), |duL
dτ

(τ)− dũL
dτ

(τ)| = O(εκπ+r−δ/6) (5.27)

The above is summarized in the statement of

Lemma 5.2 The solutions vL,eqn.(4.7), of eqn.(4.8) with the initial conditions (5.2) are approximated

together with their derivatives at t = −ε3/8−δ by the solutions of the variational equation (5.24) with

the initial conditions:

ṽL(−π/2) = ε3/16+κπ/2Λ cos(Ψ0 + ΦL)

dṽL
dθ

(−π/2) = −ε3/16+κπ/2Λ sin(Ψ0 + ΦL) (5.28)

and ΦL of (5.17) according to the estimates (5.27) with the de�nitions (5.26), (5.22).

From eqn.(5.25) one sees that (5.28) is only a reformulation of (5.19).
Using the estimates (5.20) and neglecting the contribution of the integral over g(θ) we can write

uniform approximations ṽWc,s(θ) to two special solutions ṽc,s(θ) of the variational equation (5.24) on the

interval (−π/2,−ε3/8−δ):

ṽWc/s(θ) =
εκ(t+π/2)

(−XL(t))1/2
{cos / sin} (θ − θ(−π/2)). (5.29)
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These solutions (and their approximants) obey: ṽc(θ(−π/2)) = 1, ṽs(θ(−π/2)) = 0, dṽc/dθ(θ(−π/2)) =
O(ε ln(1/ε)), dṽs(θ)/dθ(θ(−π/2)) = 1. Comparing with (4.2) one recognizes in (5.29) the "`WKB ap-
proximations"' to solutions of eq.(5.24). At τ = −ε−δ, |XL(t)| ≈ ε1/8τ1/3 = ε1/8−δ/3 and eq.(5.20)
shows that:

|(ṽc,s − ṽWc,s)(τ = ε−δ)| = εκπ/2+δ/6−1/16 ×O

(∫ ε−4δ/3

θ(−π/2)
g(θ)dθ

)
= O(εκπ/2+r/2+δ/6−1/16) (5.30)

where we used g(θ) ≈ 1/θ2 (cf.(4.10)) and (5.22). The same quality of approximation holds for dṽc,s/dθ,
but for dṽc,s/dτ we obtain, in view of dτ/dθ ≈ τ−1/3 = εδ/3:

|dṽc,s
dτ
−
dṽWc,s
dτ
| = O(εκπ/2+r/2−δ/6−1/16) (5.31)

With the help of (5.29) a uniform approximation on [−π/2,−ε−δ] of the solution of (5.24) with the
initial conditions (5.28) reads:

ṽL(t) ≈ ṽWL (t) ≡ Λε3/16+κπ/2(ṽWc (θ) cos(Ψ0 + ΦL)− ṽWs (θ) sin(Ψ0 + ΦL))

=
Λε3/16+κπ/2

(−XL(t))1/2
εκπ/2+t cos(θ(t)− θ(−π/2) + Ψ0 + ΦL)

(5.32)

With (5.31),(5.32) it follows that, at τ = −ε−δ:

|(ṽL − ṽWL )(τ)| = O(ε1/8+κπ+r/2+δ/6)

∣∣∣∣(dṽLdτ − dṽWL
dτ

)
(τ)

∣∣∣∣ = O(ε1/8+κπ+r/2−δ/6) (5.33)

5.3. The interval (−ε3/8−δ, 0)

We notice that, while the "`natural"' order of magnitude for the boundary layer is ε1/8(cf.eq.(1.18)),
i.e. uL(τ) = O(1), it turns out that, in fact, with the initial conditions (5.2), uL(τ) is O(εκπ), i.e.
for small enough ε - as argued in Sec.4.2 - it becomes smaller than the discontinuity of the reference
solutions at t = 0. We compare now the evolution in the interval (−ε3/8−δ, 0) of the solutions of the
boundary layer equation with those of the variational equation around the reference solution XL(t),
with the initial conditions (5.28). We introduce to this end "`macroscopic"' variables:

U(τ) = ε−κπuL(τ), Ũ(τ) = ε−κπũL(τ) (5.34)

U(τ) satis�es :
d2U

dτ2
+ 2γ

dU

dτ
+ 3ηL(τ)2U + 3ηL(τ)εκπU2 + ε2κπU3 = 0 (5.35)

and Ũ(τ) is a solution of the linear part of (5.35). In (5.35), ηL(τ) = XL(t)/ε1/8 and γ is given in (1.18).
The solutions of (5.35) obeying initial conditions at τ = −ε−δ may be estimated by transforming (5.35)
to an integral equation with the help of two independent solutions U1(τ),U2(τ) of the linear part. Using
the method of "`the variation of the parameters"', we obtain:

U(τ) = A1U1(τ) +A2U2(τ)

+

∫ τ

−ε−δ

(U1(τ)U2(τ ′)− U2(τ)U1(τ ′)
W (U1, U2)

εκπ(U2 + εκπU3)dτ ′
(5.36)

where A1, A2 are such that the values of U and dU/dτ at τ = −ε−δ are reproduced and W (U1, U2) is
the wronskian of U1 and U2. To discuss this equation, we need to know something about the solutions
of:

d2U

dτ2
+ 2γ

dU

dτ
+ 3ηL(τ)2U = 0 (5.37)
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for τ in (−ε−δ, 0). Writing:
U(τ) = exp(−γτ)V (τ) (5.38)

the equation for V (τ) is:
d2V

dτ2
+ (3ηL(τ)2 − γ2)V = 0 (5.39)

In Appendix C we show we can choose two solutions of (5.39), called Vc,s(τ, ε), which for large −τ
assume the "`WKB"' forms:

V (as)
c,s (τ, ε) =

31/4

Ξ(τ, ε)1/4
{cos / sin} (

∫ τa

τ
Ξ(τ, ε)1/2dτ) (5.40)

where
Ξ(τ) = 3ηL(τ)2 − γ2 ≈ 3ηL(τ, ε)2 ≈ 3τ2/3 (5.41)

for τ large and τa is an arbitrary (�nite, ε-independent) value 16 of τ . These solutions may be extended
down to τ = 0 and have a well de�ned limit as ε→ 0. Indeed, in (5.39) and (5.41) ηL(τ, ε) is given by
the inner expansion (3.9)(cf.eq.(3.34)). According to (3.9) and (3.11)(cf.eq.(3.34):

ηL(τ, ε) = η00L(τ)(1 +O(ε3/4τ2, γ/τ5/3)) (5.42)

so that the limit as ε→ 0 of expressions (5.40)at any �nite τ is obtained by simply replacing ηL(τ, ε)
by η00L(τ). We can also pass to the limit in eq.(5.39) and one expects that its solutions tend to
the solutions of its limiting form de�ned correspondingly by the requirement (5.40). Appendix C
gives (straightforward) arguments for this. The solutions Vc,s(τ, ε, τa) de�ned by (5.40) multiplied by
exp(−γτ) (cf.(5.38)) are chosen as U1,2 in (5.36). Clearly, the parameter τa is arbitrary and should
drop out in the �nal expressions17. One veri�es that, with this choice:

W (U1, U2) = exp(−2γτ) ≈ 1, τ = O(e−δ) (5.43)

Denoting then:
r(τ) = U(τ)−A1U1(τ)−A2U2(τ) (5.44)

and using the fact that |U1(τ)|, |U2(τ)| < M on (−ε−δ, 0), for some M , we verify that the operator
given by the integral on the right hand side of (5.36) de�ned on the space of functions g(τ) continuous
on [−ε−δ, 0] endowed with the sup|(1+τ1/6)g(τ)| norm maps a ball of radius const×εκπ−δ/2 into itself
and is, at least for small enough ε , a contraction, so that (5.36) admits of a unique solution there.
Thus, the solution of the complete equation (5.35) departs from the solution of its linear part with the
same initial conditions at τ = −ε−δ by quantities of O(εκπ−δ/3) on

[
−ε−δ, 0

]
. For the derivatives one

obtains estimates of O(εκπ−2δ/3).
We still have to bound the evolution of the distance between two solutions of the linear equation

(5.37) whose values di�er by O(εr+δ/6) and their derivatives by O(εr−δ/6) at τ = −ε−δ (cf.eqns.(5.27)
and (5.22)).This is a direct application of (C.19) in Appendix C, from which one deduces:

|∆U(τ = 0)|, |d∆U

dτ
(τ = 0)| = O(εr) (5.45)

Recalling (5.34), we may summarize the foregoing by:

Lemma 5.3 If a solution vL(t) = ε1/8uL(τ) of the Du�ng equation (4.1) di�ers from a solution

ṽL(t) = ε1/8ũL(t) of the variational equation around the reference solution XL(t) at t = ε3/8−δ according
to (5.27), then at t = 0:

|(uL − ũL)(τ = 0)| = O(εκπ+r−δ/3), |(duL
dτ
− dũL

dτ
)(τ = 0)| = O(εκπ+r−2δ/3) (5.46)

16It may be chosen as τ0 of (4.2) but need not
17see Section 5.4
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(recall δ = 3κπ/8).
It is useful to recall the "`constitution"' of the exponents of ε in (5.46) which measure the order of

magnitude of the approximation: a factor εκπ/2 originates in the initial conditions(5.28); a factor εκπ/2

is a result of the damping; these two factors control the magnitude of both uL(τ) and ũL(τ) in (5.46);
the remaining factor εr−δ/3 (or εr−2δ/3) states that the "`macroscopic"' quantities (5.34) are close to
each other at τ = −ε−δ as stated in (5.27) and that this distance may increase a little as we move
from τ = −ε−δ to τ = 0.

5.4. Summary of the quarter period map for τ < 0

The conclusion of section 5.3 is that to O(εκπ+r−2δ/3) the Poincaré map PL : (vL, dvL/dθ(pi/2)) ⇒
(uL, duL/dτ)(τ = 0) is given by the solutions of the variational equation around the reference solution
XL(t) with initial conditions (5.28), where (Λ,Ψ0) are related to (vL, dvL/dθ(t = −π/2)) by (5.2) and
ΞL is given by (5.41).We can write a more explicit form of PL using the combinations:

Ṽc = εκπ/2−1/16(Vc cos(Ω(τa))− Vs sin(Ω(τa)))

Ṽs = εκπ/2−1/16(Vc sin(Ω(τa)) + Vs cos(Ω(τa))) (5.47)

with

Ω(τa) = θ(τa)− θ(−π/2) ≈
∫ τa

−π/(2ε3/8)
Ξ(τ)1/2dτ (5.48)

They are chosen so that ε1/8Ṽc,s are equal at large τ = −ε−δ to the WKB approximation (5.29) to
the solutions ṽc,s of the variational equation (5.24), de�ned by initial conditions at t = −π/2 (see text
following eq.(5.29)). The combinations (5.47) are, when multiplied by exp(−γτ), exact solutions of
(5.37). The expression:

ṽaL(t) ≡Λε3/16+κπ/2(Ṽc cos(Ψ0 + ΦL)− Ṽs sin(Ψ0 + ΦL))

= Λεκπ+1/8(Vc cos(Ω(τa) + Ψ0 + ΦL)− Vs sin(Ω(τa) + Ψ0 + ΦL)) ≡ ε1/8ũaL(t)
(5.49)

is a solution of the variational equation (5.24) which di�ers at τ = −ε−δ from the solution ṽL(t) of
Lemma 5.2 as described in (5.33). With the same argument used in eq.(5.45) and in Appendix C, this
di�erence propagates down to τ = 0: recalling the de�nitions of ũL(t) (cf.Lemma 5.3 and (5.46)) and
ũaL(t) (cf.eq.(5.49)) then

|(ũL − ũaL)(τ = 0)|,
∣∣∣∣(dũLdτ − dũaL

dτ

)
(τ = 0)

∣∣∣∣ = O(εκπ+r/2) (5.50)

Thus, we can use the solution ũaL(t), which involves the functions Vc,s de�ned by means of (5.40) and
having a well de�ned limit as ε→ 0 (cf.(5.42), to express the left hand side Poincaré mapping PL in a
simpler form: taking (5.46) and (5.50) into account:

|uL(τ)− ũaL(τ)| < |uL(τ)− ũL(τ)|+ |ũL(τ)− ũaL(τ)| = O(εκπ+r−δ/3, εκπ+r/2) = O(εκπ+r/2) (5.51)

and a similar estimate for the derivative; we can then state:

Theorem 5.1 The quarter period Poincaré map PL : (Λ,Ψ)⇒ (uL, duL/dτ(τ = 0)) is given by:

uL(0) = Λεκπ((Vc(0, ε, τa) cos(Ψ + ΦL + Ω(τa))− Vs(0, ε, τa) sin(Ψ + ΦL + Ω(τa)) +O(εr/2)) (5.52a)

duL
dτ

(0) = Λεκπ(
dVc
dτ

(0, ε, τa) cos(Ψ + ΦL + Ω(τa))

− dVs
dτ

(0, ε, τa) sin(Ψ + ΦL + Ω(τa)) +O(εκπ/2))

(5.52b)
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Figure 5: The image of the disk Λ = 1 under PL with the rays Ψ = nπ/4

Recalling the de�nition (5.17) of ΦL, eqns.(5.52a),(5.52b) show that circles of radius Λε3/16+κπ/2 in
the (vL(−π/2), dvL/dθ(−π/2)) plane are mapped onto ellipses in the (uL(0), duL/dτ(0)) plane, with
a Λ−dependent phase ΦL (see Fig.5). Thus the disk Λ < const undergoes under PL a torsion. All
quantities in (5.52a),(5.52b) may be obtained from a numerical solution of the variational equation
only in an interval near t = 0: it is enough to �nd - for a given choice of τa - the solutions Vc,s(τ, ε, τa)
obeying the boundary condition given by (5.40) at some large τ = ε−δ- and extend numerically the
solution down to τ = 0. One may object that the mapping seems to depend on an arbitrary parameter
τa: this is, however, not the case. The reason is that in the form (5.32) of the solutions at large τ ,
the parameter τa does not appear at all. It is thus absent in the solutions Ṽc,s of (5.47) which match
(5.29) at τ = −ε−δ. The rotations (5.47) which depend on τa leave the sums

A2 ≡ Vc(0, ε, τ0)2 + Vs(0, ε, τa)
2, B2 ≡

(
dVc
dτ

)2

(0, ε, τa) +

(
dVs
dτ

)2

(0, ε, τa)

invariant. Further, the angle χ between the vectors (Vc, Vs) and (dVc/dτ, dVs/dτ) is also invariant.
The image of the circle Λ = const under PL is

u2
L

A2
+

(duL/dτ)2

B2
− 2

uL(duL/dτ)

AB
cosχ = Λ2 sin2 χ

It depends only on these three quantities, so that the independence of PL on τa is apparent. Moreover,
the quantities Vc,s(0, ε, τa) and their derivatives have a limit as ε → 0, according to the remarks
surrounding (5.42) and to the discussion of Appendix C. In numerical calculations we choose τa =
-10:at this value we can approximate : η(τ) ≈ sin(τε3/8)1/3/ε1/8. The limiting values for ε = 0 of the
constants in (5.52a),(5.52b) are found to be:

Vc(0, 0, τa = −10) ≈ −1.163
dVc
dτ

(0, 0, τa = −10) ≈ −0.178

Vs(0, 0, τa = −10 ≈ −0.0876
dVs
dτ

(0, 0, τa = −10) ≈ −1.5086 (5.53)

Then:
A = 1.1659, B = 1.5191, χ = 78.960◦

6. The Right Hand Side Poincaré Map

6.1. The continuation of the reference solution XL to t > 0

As one sees in Fig.4, the continuation of XL to t > 0 traverses �rst the x-axis and then approaches the
reference solution XR as t increases, oscillating around it. We describe in the following this behaviour

31



in more detail.
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Figure 6: The continuation of the reference solution ηL(τ) = XL(τ)/ε1/8 to t > 0

The interval 0 < t < τ0ε
3/8

The initial values of the solution XL at τ = 0 are (ε1/8ηL(0), ε1/8dηL/dτ(0)) ≈ ε1/8(−0.677, 0.472). In
the limit ε→ 0, the boundary layer equation

d2η

dτ2
+ η3 = τ (6.1)

admits of the symmetry τ → −τ, η → −η; as a consequence, it is true that ηL(τ) = −ηR(−τ), where
ηL, ηR are the solutions behaving like -τ1/3, τ1/3 as τ → −∞,∞ in turn. Therefore, in this limit,
ηL(0) = −ηR(0), dηL/dτ(0) = dηR/dτ(0) (cf.Section 3.3). For t > 0 (and any ε > 0), we denote
∆η(τ, ε) = ηL − ηR; it obeys the equation:

d2∆η

dτ2
+ 2γ

d∆η

dτ
+ 3η2

R∆η + 3ηR(∆η)2 + (∆η)3 = 0 (6.2)

With the same argument as in Sect.4.1, eqn.(4.21) we verify that the energy associated with (6.2):

E(τ) =
1

2

(d∆η

dτ

)2
+

3

2
η2
R(∆η)2 + ηR(∆η)3 +

(∆η)4

4
(6.3)

obeys (if E > 1) the inequality:
dE

dτ
≤ constdηR

dτ
E3/4 (6.4)

from which one concludes that E(τ) and thus ∆η(τ) are bounded at t = τ0ε
3/8. Clearly, the same is

true for all solutions starting in a disk of radius εκπ (or of any �nite radius) around (∆η(0), d∆η/dτ(0)).
Here τ0 is a time in the boundary layer region (typically τ0 = 10)

The interval τ0ε
3/8 < t < π/2

As in Sections 4.1 and 5.1 we write for ∆X(t)) ≡ ∆η(t)ε1/8:

∆X(t) =
w̃L,R(θR)

X
1/2
R

εκt+3/16 (6.5)
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with θR given in eq.(4.2). Note:In the rest of this section we shall drop the subscript "`R"' on θR since

it is clear that we con�ne ourselves to the time interval [0, π/2]. The subscript "`L"' is appended to

quantities related to the continuation to t > 0 of the left hand reference solution XL(t) or to departures

from it

The function w̃L obeys :

d2w̃L,R
dθ2

+ w̃L,R(1 + g(θ)) + k(θ)w̃2
L,R +

1

3
k(θ)2w̃3

L,R = 0 (6.6)

where (cf.(4.14))

k(θ) =
ε3/16+κt

X
3/2
R

=
exp(−γτ)

η
3/2
R

, (6.7)

XR(t) ≡ ε1/8ηR(t(θ)) and g(θ) is given in (4.8) with the interchange −XL ↔ XR As in Section 5.2, we
move over to polar coordinates:

w̃L,R = RL(θ) cos(θ + φL(θ)) (6.8a)

dw̃L,R
dθ

= −RL sin(θ + φL(θ)) (6.8b)

and obtain equations completely analogous to (5.5a),(5.5b) with the change h→ −k:

dRL
dθ

=
g(θ)RL(θ)

2
sin(2z) +

k(θ)R2
L(θ)

4
(sin z + sin 3z) +

k(θ)2RL(θ)3

12
(sin 2z +

sin 4z

2
) (6.9a)

dφL
dθ

=
g(θ)

2
(1 + cos 2z) +

1

4
k(θ)RL(θ)(3 cos z + cos 3z) + k(θ)2RL(θ)2(

3

2
+ 2 cos 2z +

1

2
cos 4z) (6.9b)

with z = θ + φL(θ).We imitate now the arguments of Sect.5 concerning averaging and "`remove"
�rst the terms in k(θ) in (6.9a), (6.9b) by a transformation of the dependent variables similar to
eqs.(5.7a), (5.7b). One has to realize that, although the equations are similar to those of the previous
section, the function k(θ) is of O(1) when t is of O(ε3/8), in opposition to h(θ) which is of O(εκπ)
(cf.eq.(5.3)).However, it is monotonically decreasing with θ and arbitrarily small for large θ. According
to Appendix B, the inversion of the transformations (5.7a), (5.7b) at �xed τ > τ0 is possible if τ0 is
su�ciently large.
We obtain a set of equations for the functions R1,L, φ1,L very similar to eqns.(5.8a), (5.8b). The initial

conditions at τ0 are di�erent to O(1) from those for RL(θ), φLθ in (6.9a), (6.9b). The boundedness of
the solutions of these equations is not immediately apparent since k(θ)2 ≈ (θ0/θ)

3/4 is not integrable
(clearly, the integral over k(θ)2 is �nite for �nite ε but diverges as ε → 0). We perform thus a
second transformation, similar to (5.11a),(5.11b), which separates o� a term (−7/24)RL(θ)2k(θ)2) in
the equation for φ2,L(θ).
We denote:

ΦL,R(θ) ≡ − 7

24

∫ θ

θ0

RL(θ)2k(θ)2dθ (6.10)

Contrary to the phase ΦL of eqn.(5.17), whose magnitude depends on the ratio εκπ/γ1/3, the value at
θ(π/2) of the additional phase ΦL,R(θ), eq.(6.10), appearing for t>0 in the oscillations of the extension
of XL(t) around XR(t) is truly divergent as ε vanishes. Using the estimate :

2

π
t ≤ sin t ≤ t, 0 < t < π/2

one veri�es that:∫ π/2

τ0ε3/8
k(θ)2dθ

dt
dt ≈ 1

ε1/8κ1/3 ln1/3(1/ε)

∫ ∞
0

exp(−2u)du

u2/3
= O(γ−1/3) (6.11)
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As in Section 5.2 it turns out that dRL/dθ is very small for large θ and thus we expect RL(θ) to
approach there a constant value RL,f ≡ RL(t(θ) = π/2). If this value is nonzero, the additional phase
ΦL,R is indeed divergent as ε → 0. Now, the function XL(t) (and thus ηL(θ)) still depends on the
value of ε; so do the corresponding values RL,f , for which we write for clarity RL,f (ε). In Appendix D
we show

Lemma 6.1 As ε → 0, the values RL,f (ε) tend to a limit RL,f (0). This limit is obtained by solving

eqns.(5.13a), (5.13b) with −h(θ) replaced by k(θ), eq.(6.7) where ηR(θ, ε) is replaced by η00R(τ(θ)) of

(3.24a) and γ is set equal to zero.

For γ = 0 we obtain in (6.7) k(θ) = 1/ηR(θ)3/2 ≈ 1/τ(θ)1/2. A numerical evaluation leads to Rf (0) ≈
0.84 . If we accept this as a "`proof"' that Rf (0) 6= 0, we can state

Lemma 6.2 The value of the secular term ΦL,R(θ) at θ(t = π/2) is O(γ−1/3).

We de�ne the "`rest phase"' left after the removal of the secular term as:

φ̄L(θ) ≡ φL(θ)− ΦL,R(θ) (6.12)

This "`rest phase"' is also ε-dependent (so that we should write φ̄L,ε(θ)), however, in a "`harmless"'
manner:let φ̄L,ε(t(θ) = π/2) ≡ φ̄L,f (ε). With the same argument leading to Lemma 6.1 we show in
Appendix D

Lemma 6.3 As ε → 0, the values φ̄L,f (ε) tend to a limit φ̄L,f (0).This limit is obtained by solving

eqns.(5.13a),(5.13b) with −h(θ) changed to k(θ) of (6.7) with the same replacements as in Lemma 6.1.

To conclude,taking (6.5) into account, the continuation of XL(t) to t > 0 oscillates around the reference
solution XR(t); the departure from XR reaches the value 0.84εκπ/2+3/16 at t = π/2; as follows from
the de�nition (4.2) of the variable θR, the number of oscillations with frequency proportional to XR(t)
increases inde�nitely as ε → 0 and there is an additional phase, which also increases inde�nitely in
this limit, as shown by equation(6.11).

6.2. The variational equation around XL(t) for t > 0

In Section 5 we have seen that all those solutions of Du�ng's equation which start at t = −π/2
in a disk of radius Λεκπ/2+3/16 around the left hand side reference solution XL(t) land in a disk of
radius εκπ around the values (ηL(0), dηL/dτ(0)) (cf.Section 5.4, eqn.(5.52a), (5.52b); their departure
from XL(t) ≡ ε1/8ηL(τ) is denoted there by ε1/8uL(τ). For t > 0, we consider the departures from
XR(t) ≡ ε1/8ηR(τ):

uR(τ) = uL(τ) + ηL(τ)− ηR(τ) ≡ uL(τ) + ∆η(τ) (6.13)

with ∆η(τ) of (6.2) In analogy to eqn.(6.5), we write :

uR(θ) =
w(θ)εκt

η
1/2
R

(6.14)

and de�ne R(θ), φ(θ) in analogy to eqns.(6.8a), (6.8b):

w(θ) = R cos(θ + φ) (6.15a)

dw

dθ
= −R sin(θ + φ) (6.15b)

The right hand side Poincaré map around XR(t) may then be written

PR :

(
uR(0),

duR
dτ

(0)

)
⇒ (R(t(θ) = π/2), φ(t(θ) = π/2)) (6.16)
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Since we are interested only in a small neighbourhood of the point (∆η(0), d∆η/dτ(0)) ≈ (2ηL(0), 0),
we expand the Poincaré map in a Taylor series around it:(φL,f (ε) ≡ φL(t(θ) = π/2, ε), cf.eq.(6.8b))

PR(uR(0), duR/dτ(0)) = (RL,f (ε), φL,f (ε))+

DPR(∆η(0),d∆η/dτ(0))(uL(0), duL/dτ(0)) + ..
(6.17)

where (uL(0), duL/dτ(0)) is, according to eqn.(5.52a),(5.52b), O(εκπ). We write the mapping PR as a
composition of three transformations:

PR = Pf ◦T ◦ Pi (6.18)

given by:
Pi : (uR(0), duR/dτ(0)) ⇒ (uR(τ0), duR/dτ(τ0)) (6.19a)

T : (uR(τ0), duR/dτ(τ0)) ⇒ (R(θ(τ0)), φ(θ(τ0))) (6.19b)

Pf : (R(θ(τ0)), φ(θ(τ0))) ⇒ (R(θ(t = π/2)), φ(θ(t = π/2))) (6.19c)

where τ0 is a "`time"' in the boundary layer already introduced in Section 6.1 following eq.(6.4); it is
for convenience also chosen as origin of the variable θR, eq.(4.2). Corresponding to the composition
(6.18) we write for the derivative:

DPR(∆η(0), d∆η/dτ(0)) = DPf(RL(τ0), φL(τ0)) ◦ DT(∆η(τ0), d∆η/dτ(τ0))

◦ DPi(∆η(0), d∆η/dτ(0))
(6.20)

The elements of the jacobian matrices appearing in (6.20) are the values of solutions of the variational
equation around XL(t) for t > 0 at τ0 and t = π/2 with appropriate initial conditions. We evaluate
next these elements.

The interval 0 < t < τ0ε
3/8

The variational equation around XL(t) reads:

d2δu

dτ2
+ 2γ

dδu

dτ
+ 3ηL(τ)2δu = 0 (6.21)

On the bounded interval 0 ≤ τ ≤ τ0 this equation has bounded solutions; moreover, as ε → 0, these
solutions tend uniformly to those of the equation obtained by letting formally ε = 0 in (6.21).This
means setting γ = 0 in (6.21) and replacing ηL(τ) by the continuation to t > 0 of the �rst term η00L(τ)
in the expansion (3.34).
The rapid oscillations of ηL(τ) for τ > 0 (see Fig.6) lead to solutions of eq.(6.21) with a more

complicated behaviour than those on the l.h.s.18. Whereas the image at τ = 0 of the circle Λ = 1 at
t = −π/2 is a (torsioned) ellipse (see Fig.5), the deformation of the latter under the �ow for τ > 0 is
considerable ,see Fig.7, which shows the image of the (approximate) ellipse at τ = 0 (crosses) at times
τ = 3 (boxes) and τ = 10 (diamond) for values of ε3/8 = 0.003, κ = 0.04. The origin is now chosen at
(ηR(0), dηR/dτ(0)).

18the corrections to the WKB formulae are determined by the function g(θ) (analog of eq.(4.10)) which contains the
�rst and second derivatives of the rapidly oscillating ηL(τ)
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Figure 7: The deformation of the domain in Fig.5 at small τ > 0

The transformation T

With the help of eqn.(6.14) and the de�nition of the variable θR, one veri�es that the jacobian of the
transformation:

T1 : (uR,
duR
dτ

)(τ0)⇒ (w,
dw

dθ
)(τ0)

is:

detDT1 =
1√
3

exp(−γτ0)

All elements of DT1 are continuous at ε = 0. The supplementary transformation19 T2 : (w, dw/dθ)⇒
(R,φ) given by eqns.(6.15a),(6.15b) has a jacobian equal to −1/R(τ0); we take it as numerically
established that R(τ0) 6= 0; it tends to a nonzero value R0(τ0) as ε→ 0.

The interval τ0ε
3/8 < t < π/2

The jacobian matrix DPf is more complicated: it contains elements which diverge as ε→ 0: the reason
is that the contribution coming from the variation of the term ΦL,R of (6.10) (see Lemma 6.2) is
divergent in this limit. It is thus convenient to study �rst a "`reduced"' transformation:

Pfr : (R,φ)(τ0)⇒ (R, φ̄)(t = π/2) (6.22)

where φ̄ is the "`rest phase"' de�ned for each solution in analogy to (6.12),by subtraction of the
"`secular"' term. To this transformation we associate the jacobian matrix DPfr. Concerning it, we
show:

Lemma 6.4 The matrix elements of DPfr are bounded and continuous with respect to ε as ε→ 0.

Proof. The proof is similar to the one in Appendix D and is based on a qualitative study of the
solutions of the variational equation around the solutions R4L,0, φ4L,0 of eqns.(D.4a), (D.4b) and of
the solutions R4L,ε, φ4L,ε of (D.6a), (D.6b), in turn . According to the choice of initial conditions,
these solutions, denoted in the following generally by δR(θ), δφ(θ),may be identi�ed with the partial
derivatives ∂R(θ)/∂R0, ∂φ(θ)/∂R0 (if δR(0) = 1, δφ(0) = 0) or ∂R(θ)/∂φ0, ∂φ(θ)/∂φ0 (if δR(0) =
0, δφ(0) = 1), where R0, φ0 are the initial values at θ(τ0) = 0.

19
T = T2 ◦T1
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The proof consists of three steps: (i)we show that, if ε is set formally to zero, then the solutions
(δR0)(θ), (δφ̄0)(θ) (in the latter the "`secular term "` has been removed, see (6.33) below) of the
variational equation around XL0 ≡ η00L(τ)ε1/8 approach a limit as τ increases inde�nitely; (ii)For
�nite ε we show that, if τ > ε−α, for some α < 3/8, the solutions (δR)(θ), (δφ̄)(θ) di�er by arbitrarily
small amounts from their values at t = π/2, provided ε is appropriately small;(iii) We show that,
for an interval of values of τ, τ0 < τ < ε−β , with 3/8 > β > α, the di�erence between the solutions
δR0(θ), δφ̄0(θ) (corresponding to ε = 0) and δR(θ), δφ̄(θ) (corresponding to a �nite ε) may be made
as small as we wish, by letting ε be appropriately small.
In proving (i), we append for clarity to all variables related to the variational equation a superscript

"`0"',recalling that ε is set equal to zero. We assume we have "`removed"' by successive transformations
of the dependent variables the terms of O((k0)3) and O(dk0/dθ),(k0(θ) ≡ 1/η00(θ)3/2) and consider
�rst the variational equation around the solutions R4L,0, φ4L,0(eqns.(D.4a),(D.4b)):

d(δR0
4)

dθ
= k0(θ)4RL,0(θ)4P̄1(z0)(δR0)(θ) + k0(θ)4RL,0(θ)5P̄2(z0)(δφ0)(θ) + ... (6.23a)

d(δφ0
4)

dθ
= − 7

24
δ(k0(θ)2RL,0(θ)2) + k0(θ)4RL,0(θ)3Q̄1(z0)(δR0)(θ)

+ k0(θ)4RL,0(θ)4Q̄2(z0)(δφ0)(θ) + ...

(6.23b)

where P̄1,2, Q̄1,2 are trigonometric polynomials of z0 = θ + φL,0 and the dots stay for terms which fall
o� more rapidly with θ. It is relevant that the polynomials P̄1(z0), P̄2(z0), Q̄2(z0) have zero mean
whereas Q̄1(z0) contains a constant ("`secular"') term. From the form of the transformations leading
from RL,0, φL,0 to R4L,0, φ4L,0 (cf.eqs(5.7a),(5.7b), (5.9a), (5.9b), (5.11a),(5.11b)) we see that:

δR0(θ) = δR0
4(θ)(1 +O(k0(θ))) + δφ0

4(θ)O(k0(θ)) (6.24a)

δφ0(θ) = δR0
4(θ)O(k0(θ)) + δφ0

4(θ)(1 +O(k0(θ)) (6.24b)

In (6.24a), (6.24b) the terms denoted by O(k0) may be read o� (5.9a),(5.9b) : they contain trigono-
metric polynomials with zero mean. It follows that the variation of the secular term in (6.23b) is

δ(k0(θ)2RL,0(θ)2) = 2k0(θ)2RL,0(θ)δR0
4(θ) + (O(k0(θ)3)δφ0

4(θ) (6.25)

These terms also give the leading order (the terms with the slowest fallo� in θ) of the coe�cients of
δR0

4(θ), δφ0
4(θ) in (6.23b).

We show next that the solution δR0
4(θ) of eqn.(6.23a) is actually bounded as θ →∞ and the solution

δφ0
4 of eqn.(6.23b) obeys δφ0

4 = O(θ1/4) in the same limit. We consider to this end the Lyapunov
expression:

L = r(δR0
4(θ))2 + s(δφ0

4(θ))2/θ1/2 (6.26)

where r, s > 0 are two parameters which may be chosen freely. Denoting by aR(θ), aP (θ) and
bR(θ), bP (θ) the coe�cients of δR0

4, δφ
0
4 in eqns.(6.23a),(6.23b) in turn, we may write, after taking

(6.25) into acount:

1

2

dL

dθ
= raR(θ)(δR0

4)2 + (raP (θ) + s
bR(θ)

θ1/2
)(δR0

4)(δφ0
4)

+ s
bP (θ)

θ1/2
(δφ0

4)2 − 1

4
s

(δφ0
4)2

θ3/2

(6.27)

Using now the inequalities:

|δR0
4| ≤

√
L

r
|δφ0

4| ≤ θ1/4

√
L

s
(6.28)
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and the fact that the last term in eqn(6.27) is negative, we deduce:

dL

dθ
≤ 2L(|aR(θ)|+

√
r

s
θ1/4|aP (θ)|+

√
s

r

|bR(θ)|
θ1/4

+ bP (θ)) (6.29)

For large θ the dominant term is the one containing |bR(θ)|/θ1/4 as one sees by reverting to eqns.(6.23a),
(6.23b) and (6.25): it falls o� like 1/θ. Inequality (6.29) can be integrated to yield

L < const× θ2C
√
s/r, C = sup|bR(θ)|θ3/4

We may choose r and s so that the exponent of θ be 2d, with 0 < d < 1/8. It follows then from
eqn.(6.28) that:

|δφ0
4(θ)| < const× θd+1/4 (6.30)

We return now to eqn(6.23a) and integrate it from an initial value θi to some θ: since δφ0
4 obeys (6.30),

the integral over δφ0
4 is convergent and we deduce from Gronwall's inequality that:

δR0
4(θ) < const× exp(

∫ θ

θi

|aR(θ)|dθ) < const (6.31)

Thus δR0
4(θ) is bounded for all θ. Further, integrating eqn.(6.23a) between two values θm and θn one

sees that |δR0
4(θm) − δR0

4(θn)| → 0 as (θm, θn) → ∞ and thus δR0
4(θ) approaches a limit as θ → ∞.

This limit is approached like 1/θ1/4−d (The dominant term in (6.23a) is the one containing δφ0). From
(6.24a) and the fact that k0(θ) ≈ 1/θ3/8, it follows that, if the exponent d in (6.30) is less than 1/8,
δR0(θ) approaches itself a limit as θ →∞. This approach is at least of O(1/θ1/8−d).
We apply next Gronwall's inequality to eq.(6.23b), after taking (6.25) into account:

|δφ0
4(θ)| < sup |

∫ θ

0
k0(θ)2RL,0(θ)δR(θ)dθ| exp(const×

∫ θ

0
k0(θ)3dθ) < const× θ1/4 (6.32)

where we have used the fact that the integral in the exponent is convergent, whereas the factor in front
is bounded by const × θ1/4 in view of eq.(6.31).As a consequence of (6.32) we may assume from now
on that the small exponent d = 0. We de�ne further:

δφ̄0
4(θ) = δφ0

4(θ) +
7

12

∫ θ

0
k0(θ)2RL,0(θ)(δR0)(θ)dθ (6.33)

Taking into account eqns.(6.24a),(6.24b),it is true that:

dδφ̄0
4(θ)

dθ
= cR(θ)(δR0

4)(θ) + cP (θ)(δφ0
4)(θ))

cR(θ), cP (θ) = O(k0(θ)4)

(6.34)

We integrate eqn.(6.34) from an initial value θi to θ and use the bounds of eqn.(6.31), (6.32) to deduce
that δφ̄0

4(θ) is itself bounded and has a limit as θ →∞. We can now revert to an "`original"' variation
of the "`rest phase"' δφ̄0 de�ned by :

δφ̄0 = δφ0 +
7

12

∫ θ

0
k0(θ)2RL,0(θ)δR0(θ) (6.35)

Since δφ0 is related to δφ0
4 by (6.24b) and δφ̄0

4 de�ned in (6.33) was shown to be bounded it follows
that δφ̄0 is itself bounded and has a limit as θ → ∞, which is approached like 1/θ1/8 (or 1/τ1/6).We
denote the limits of δR0(θ), δφ̄0(θ) by δR0

f , δφ̄
0
f .
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We now turn to point(ii) of the proof and show for �nite ε that, if τ > ε−α with 0 < α < 3/8,
the di�erence between δR(θ(τ); ε) ≡ δR(θ) and its value at θ(t = π/2) becomes vanishingly small as
ε→ 0. The same is true for δφ̄(θ; ε) ≡ δφ̄(θ) of (6.35). This is done by repeating the argument above
but using the complete function k(θ) ≡ k(θ, ε) for �nite ε and correspondingly a modi�ed Lyapunov
function L(θ) :

L(θ) = r(δR4(θ))2 + s
δφ4(θ)2

Φ(θ)2
, Φ(θ) ≡

∫ θ

k(θ)2dθ (6.36)

The function Φ(θ) increases like θ1/4 for τ < 1/γ and then stays approximately constant at values of
O(1/γ1/3). All arguments used above for ε = 0 may be repeated with the conclusion that

|δR4(θ)| < const |δφ4| < const× Φ(θ) < const× θ1/4 (6.37)

and that the di�erences to the values at t = π/2 obey:

|δR4(τ = ε−α)− δR4(t = π/2)|, |δφ̄4(τ = ε−α)− δφ̄4(t = π/2)| ≤ Cεα/3 (6.38)

Returning to the original δR(θ), δφ̄, these bounds are turned into:

|δR(τ = ε−α)− δR(t = π/2)|, |δφ̄(τ = ε−α)− δφ̄(t = π/2)| ≤ Cεα/6 (6.39)

We turn now to point (iii) of the argument and compare directly the values of δR(θ, ε), δφ̄(θ, ε) with
those obtained for ε = 0. To this end, we revert again to the equations (6.23a),(6.23b) and (6.34)
written appropriately for ε = 0 and a �nite small ε value. We subtract them and using notations like,
e.g.: ∆(δR4(θ)) ≡ δR4(θ, ε)− δR0

4(θ) and similarly for ∆(δφ̄4),∆(δφ4) and also ∆aR(θ) ≡ aR(θ, ε)−
aR(θ, 0), etc.(cf.(6.29)) we obtain equations of the form:

d∆(δR4)

dθ
= ∆aR(θ)δR4(θ) + ∆aP (θ)δφ4(θ) + a0

R(θ)∆δR4(θ) + a0
P (θ)∆δφ4(θ) (6.40a)

d∆(δφ4)

dθ
= ∆bR(θ)δR4(θ) + ∆bP (θ)δφ4(θ) + b0R(θ)∆δR4(θ) + b0P (θ)∆δφ4(θ) (6.40b)

These equations are an inhomogeneous version of eqns.(6.23a), (6.23b). The solutions of the homo-
geneous part have been shown to obey the bounds of eqns.(6.30),(6.31). By means of the method
of "`variation of the constants"' we may write qualitatively a general solution of eqns.(6.40a),(6.40b):
since the initial conditions are ∆δR4(0) = ∆δφ4(0) = 0 (we are interested in those solutions that
obey,e.g.∂R/∂R0(θ = 0) = 1,independently of ε), we obtain, e.g.

∆δR(θ) =

∫ θ

0
(fR(θ′)(δφ(2))(θ′)− fφ(θ′)(δR(2))(θ′))dθ′(δR(1))(θ)

−
∫ θ

0
(fR(θ′)(δφ(1))(θ′)− fφ(θ′)(δR(1))(θ′))dθ′(δR(2))(θ)

(6.41)

where fR(θ), fφ(θ) represent the inhomogeneous terms in eqns.(6.40a), (6.40b) and δR(i), δφ(i), i = 1, 2
are two independent solutions of the homogeneous equation with a wronskian equal to unity. As an
example of an estimate of the di�erences ∆aR,∆bR, etc. we consider:

∆bR(θ) = O(
1

τ
− exp(−γτ)

τ(1 + ε3/4τ2)
) = O(ε3/4τ), τ < 1/γ (6.42)

These di�erences are to be evaluated at �xed θ, i.e. the values of τ appearing in the two terms in
(6.42) are a priori di�erent; however, as shown in Appendix D (cf.eq.(D.12) it is enough for coarse
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estimates to use in both terms the value of τ corresponding to ε = 0, if τ < ε−δ with δ < 3/8. Using
eqns.(6.30),(6.31) one veri�es that :

fR(θ) = O(ε3/4τ1/3), fφ(θ) = O(ε3/4τ) (6.43)

With this we estimate from eqn.(6.41) and its analogue for ∆δφ4:

∆δR4(θ) = O(ε3/4θ7/4), ∆δφ4(θ) = O(ε3/4θ2) (6.44)

Taking into account eqns.(6.24a),(6.24b), we verify that these estimates hold unchanged even for
∆δR(θ),∆δφ(θ). Using eqn.(6.35), we obtain:

∆δφ̄ = O(ε3/4θ7/3)

If τ < ε−β ,(θ < ε−4β/3), ∆δR, ∆δφ̄ tend to zero with ε provided 3/4−28β/9 < 0; this is ful�lled if,e.g.
β = 1/5. For any choice of α < 1/5, the di�erence between δR, δφ̄(τ) and their values at t = π/2
vanishes as ε → 0 (cf.eqns.(6.38),(6.39)). Acording to (i) δR0(θ), δφ̄0(θ) approach their asymptotic
values like 1/θ1/8 and thus the di�erences to these latter are O(εα/6) at τ = ε−α. We can thus
conclude the limiting values (δR(t = π/2), δR0), (δφ̄(t = π/2), δφ̄0) also approach each other as ε→ 0.
This ends the proof of Lemma 6.4.

6.3. The mapping DPR

The �rst derivative DPR of the Poincaré map is obtained from the values at τ = π/(2ε3/8) of
two special solutions δR(θ), δφ(θ) of the variational equation, with initial conditions at τ = τ0

:(δR = 1, δφ = 0), (δR = 0, δφ = 1) in turn. According to Lemma 6.4 the values ∂R/∂R0(π/(2ε3/8)),
∂R/∂φ0(π/(2ε3/8)) approach as ε → 0 the asymptotic values (∂R/∂R0)0, (∂R/∂φ0)0 of the solutions
of an equation in which ε was set formally equal to zero (we recall R0 ≡ R(τ0), φ0 ≡ φ(τ0), with R,φ
of eq.(6.15a),(6.15b)). These values turn out to be:

A0
R ≡

(
∂R

∂R0

)0
∼= 0.96 A0

P ≡
(
∂R

∂φ0

)0
∼= 0.08 (6.45)

The same is true for the asymptotic values of the derivatives of the "`rest phase"' φ̄0

B0
R ≡

(
∂φ̄

∂R0

)0

∼= 0.25 B0
P ≡

(
∂φ̄

∂φ0

)0

∼= 1.08 (6.46)

These values depend on the point τ0 which, for numerical convenience, is chosen su�ciently large so
that the asymptotic form η(τ) ≈ τ1/3 be valid 20. It turns out that the convergence of the variations
δR(θ) to the limiting values is rapid, that of the δφ̄ is, however, very slow.
On the other hand, the derivative ∂φ/∂R0(θ) diverges as θ → ∞. This shows the origin of the

asymptotic circle map given by the Du�ng equation: the small disk of radius εκπ is "`stretched"' in a
τ -time interval of the order 1/γ in a rectangle in the (R,φ) plane, highly elongated in the φ-direction.
In a τ - interval of O(1/γ), friction plays no role: this stretching is entirely "`hamiltonian"': the volume
in phase space is conserved (the transformation (6.15a),(6.15b) is not canonical;for a unit jacobian,
one must multiply δφ by R; the area of the rectangle is multiplied by a factor R(τ = 1/γ)/R(τ0) ≈ 1).
Clearly, when φ is "`wrapped"' back on the unit circle, it will possibly cover it - depending on the size
of the initial disk - more than once: it is this mapping of the circle into itself which leads to the chaotic
motion observed at smaller values of the damping21.The arguments of this paper show that it must be
observed at increasing values of the damping as the forcing Γ increases inde�nitely.

20τ0 = 10 is a possible choice; clearly, its value drops out in the �nal results
21As is shown in Section 7, chaotic motions appear long before the circle is completely covered
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In Fig.8 we show the image of the circle Λ = 1 at t = −π/2 in the (w, dw/dθ) plane at t = π/2
for ε3/8 = 0.003, κ = 0.04; one sees the extreme angular stretching (in the φ-direction) caused by the
diverging derivative ∂φ/∂R0. The crosses show the approximation o�ered by the variational equation
(for ∂R, φ/∂R0, φ0). Fig.9 shows a situation at smaller damping (ε3/8 = 0.002, κ = 0.02) where the

eps38=0.003,Lambda=1,k=0.04
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Figure 8: The image of the circle Λ = 1 at t = −π/2 in the (w, dw/dθ) plane at t = π/2

stretching exceeds 2π. At smaller ε (larger forcing) the arms of the spiral approach each other so
that asymptotically the disk Λ = 1 is mapped into a very thin ring at t=π/2. The points show again
the approximation of the Poincaré plot by the �rst derivative; feeling supported by this numerical
evidence22, we do not discuss in this paper at all the corrections due to higher terms of the Taylor
expansion.

eps38=0.002,Lambda=1,k=0.02
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Figure 9: The image of the circle Λ = 1 at t = −π/2 in the (w, dw/dθ) plane at t = π/2 at smaller
damping

We evaluate next more carefully the derivatives ∂φ/∂R0(θ(π/2)), (∂φ/∂φ0)(θ(π/2)) for �nite, small
values of ε.

∂φ

∂R0
=

∂φ̄

∂R0
− 7

12

∫ θ(π/2)

0
k(θ)2RL,ε(θ)

∂R

∂R0
(θ)dθ (6.47)

22The agreement is better than warranted by the estimates of the paper
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Both the �rst term and RL,ε(θ), (δR)(θ) under the integral sign are bounded 23 at θ = θ(π/2) . The
leading behaviour of the phase is determined by the integral: according to Lemma 6.1 and Lemma 6.4,
the values of RL,ε(θ(π/2)),∂R/∂R0(θ(π/2) have limits as ε→ 0, denoted by RL,f (0), A0

R (vgl.Lemma
6.1 and 6.45). Thus we may write for the dominant contribution in (6.47):∣∣∣∣( ∂φ

∂R0

)
d

∣∣∣∣ =

∣∣∣∣∣− 7

12
RL,f (0)A0

R

∫ θ(π/2)

0
k(θ)2dθ

∣∣∣∣∣ ≤ const×
∫ π/(2ε3/8)

τ0

exp(−2γτ)

τ2/3
dτ

=
const

γ1/3

(6.48)

which shows explicitly the divergence as ε → 0 in the factor 1/γ1/3. It turns out that the factor
multiplying 1/γ1/3 has itself a slow logarithmic dependence on ε and approaches a �nite value as
ε→ 0 (≈ 1.80). Fig.10 shows the ε-dependence of the quantity C0(ε) de�ned by comparison to (6.48)
through (

∂φ

∂R0

)
d

= −
C0(ε)A0

R

γ1/3
(6.49)
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Figure 10: The ε-dependence of the quantity C0(ε) of eq.(6.49)

The remaining κ-dependence of C0(ε) is negligible in our range(εκπ/γ1/3 ≈ 1). The order of magni-
tude of ∂φ/∂R0 is correctly reproduced if the integrals are simply cuto� at τ = 1/γ and the exponential
term in k(θ) is ignored. For �nite ε the expression in (6.48) should be multiplied by (1 + O(εs)) for
some small s, which controls the approach of ∂R/∂R0(θ(π/2)) to A0

R as ε→ 0 (see previous section).
We compute next (upper bounds to) the corrections to the dominant term and evaluate, for �nite ε:

I ≡
∫ θ(π/2)

0
k(θ)2(RL,ε(θ)

∂R

∂R0
(θ)−RL,f (ε)

∂R

∂R0
(θ(π/2))dθ (6.50)

In Appendix E we show that this integral is bounded and even has a limit, which we denote by D0
R, as

ε→ 0. This is in principle a �nite quantity which must be added to the contribution of the "`rest phase"'
(6.35). However, since RL,ε(θ),∂R/∂R0(θ) are, apart from small oscillations, remarkably constant, the
contribution of (6.50) is ≈ 0 The same arguments may be repeated for the partial derivative ∂φ/∂φ0:

23θ(π/2) means the θ-value corresponding to t = π/2; it is O(1/ε1/2)
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the leading term is O(1/γ1/3) in analogy to (6.48):

∂φ

∂φ0
(θ(π/2)) = − 7

12

√
3

21/3γ1/3
Γ(1/3)RL,f (0)A0

P ≡
C0A

0
P

γ1/3
(6.51)

with AP of eqn.(6.45). There exists in principle an additional bounded term, which tends to a limit
D0
P as ε → 0. It is the sum of ∂φ̄/∂φ0, which approaches (slowly) the value BP , eq.(6.46) and of the

analogon of (6.50), which is ≈ 0. To conclude, the map (R0, φ0)⇒ (R(θ(π/2)), φ(θ(π/2))) is given by
(R0L, φ0L are the values of (R0, φ0) assumed by XL at τ0) :

R0 ⇒ RL,f (ε) +AR(ε)(R0 −R0L) +AP (ε)(φ0 − φ0L) + higherorders (6.52a)

φ0 ⇒ φL(π/2, ε) +

(
−C0AR(ε)

γ1/3
+ CR(ε)

)
(R0 −R0L) +

(
−C0AP (ε)

γ1/3
+ CP (ε)

)
(φ0 − φ0L) + h.o.

(6.52b)
where the higher orders are O(ε2κπ) multiplied by the order of magnitude of the second derivative.
The terms AR(ε), AP (ε) approach the values A0

P , A
0
R of eq.(6.45). The terms CR(ε), CP (ε) are the

sums of the corrections to the leading 1/γ1/3 term given by (6.50) (and its analogon for ∂R/∂φ0) and
the contributions (6.46) of the "`rest phase"' φ̄ in (6.47). As ε→ 0 these terms approach (slowly) the
limiting values (6.46) given by the ε = 0 equation:

CR(ε)⇒ B0
R +D0

R ≈ B0
R CP (ε)⇒ B0

P +D0
P ≈ B0

P (6.53)

Eqns.(6.52a)(6.52b) contain the matrix elements of DPf, eqn.(6.20). The complete jacobian DPR eval-
uated at (∆η(0), d∆η/dτ(0)) is computed by performing the matrix multiplication in (6.20). The
elements of DPi are in the limit ε→ 0 given by the solutions of eqn.(6.21) with γ = 0 and ηL replaced
by ηL00 . For reference, for the choice τ0 = 10 they are:

∂u0R(τ0)

∂u0L
= 0.723

∂u0R(τ0)

∂u′0L
= 1.111

∂u′0R(τ0)

∂u0L
= 0.550

∂u′0R(τ0)

∂u′0L
= 2.230

(6.54)

The mapping DT for τ = τ0 is obtained from (6.14). The dominant terms are:

J1 ≡
∂R

∂u0L
(θ = π/2) ∼= −0.43, J2 ≡

∂R

∂u′0L
(θ = π/2) ∼= −0.247 (6.55)

With this, the right hand side Poincaré map reads (cf.eq.6.16):

(uL(0),
duL
dτ

(0))⇒ (RL,f (ε) + J1uL(0) + J2
duL
dτ

(0) +O(ε2κπ),

θ(π/2)− θ(τ0) + φL(π/2, ε)− C0

γ1/3
(J1uL(0) + J2

duL
dτ

(0))

+ E0uL(0) + F0
duL
dτ

(0) +O(
ε2κπ

γ1/3
)

(6.56)

where φL(π/2, ε) is de�ned through (6.8a), (6.8b); it contains a "`secular"', divergent term ΦL,R(θ(π/2))
described in Lemma 6.2 (cf. eq. (6.10)) and a "`�nite"' term φ̄L(π/2) which has a limit φ̄L,f (0) as
ε → 0, as described in Lemma 6.3. Further, E0, F0 approach as ε → 0 constants obtained from the
values in eqns.(6.53),(6.54): E0 ≈ 1.02, F0 ≈ 2.11. The term O(ε2κπ/γ1/3) is (only qualitatively) jus-
ti�ed as follows: the second derivative of the Poincaré map is expected to diverge like γ−1/3 as ε→ 0,
like the phase φL and its �rst derivative δφ, and is multiplied by terms of O(u2) = O(ε2κπ); since - as
may already be apparent - we expect bifurcations to occur when εκπ/γ1/3 is O(1), this correction is of
the same order of magnitude as the terms preceding it. However, for small ε, the bifurcation pattern
is determined by the divergent terms (see Sections 7 and 8).
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7. The Complete Map P and its Associated Circle Map

7.1. The map P

We put now together eqns.(5.52a), (5.52b) and (6.56) to obtain the image of a point

P : (w,
dw

dθ
) = (Λ cos Ψ0,−Λ sin Ψ0)

situated in a disk around (XL(−π/2), dXL/dθL(−π/2)) under the mapping P of (3.40) (with the change
t⇒ θL,R of the independent variable). We may write it as:

Λ⇒RL,f (ε) + Λεκπ{(J1Vc(0) + J2
dVc
dτ

(0)) cos(Ψ0 + ΦL(Λ) + Ω)

− (J1Vs(0) + J2
dVs
dτ

(0)) sin(Ψ0 + ΦL(Λ) + Ω)}+O(εκπ+δ)

(7.1a)

Ψ0 ⇒π + θR(π/2)− θR(τ0) + φL(π/2, ε)− C0Λ
εκπ

γ1/3
{(J1Vc(0) + J2

dVc
dτ

(0))×

cos(Ψ0 + ΦL(Λ) + Ω)− (J1Vs(0) + J2
dVs
dτ

(0)) sin(Ψ0 + ΦL(Λ) + Ω)}

+ Λεκπ{(EVc(0) + F
dVc
dτ

(0)) cos(Ψ0 + ΦL(Λ) + Ω)

− (EVs(0) + F
dVs
dτ

(0)) sin(Ψ0 + ΦL(Λ) + Ω)}+O(
ε2κπ

γ1/3
)

(7.1b)

where we have used the notation in (6.56).In the region where εκπ/γ1/3 is O(1) the last two terms in
(7.1b) are both of O(εκπ) and will be treated together. These expressions are simpli�ed by introducing
M and ξ through:

J1Vc(0) + J2
dVc
dτ

(0) ≡M cos ξ J1Vs(0) + J2
dVs
dτ

(0) ≡M sin ξ (7.2)

In eqns.(7.1a),(7.1b) we wrote the Λ-dependence of ΦL, eq.(5.17) explicitly. The term π in (7.1b) takes
care of the minus sign present in the de�nition of the half-period map P (cf. the de�nition eq.(3.42)).
We perform next the ε,γ-dependent transformation of the angular variable in (7.1a), (7.1b):

Ψ0 = χ+ π + θR(π/2)− θR(τ0) + φL(π/2, ε, γ) ≡ Sχ (7.3)

with which the transformed mapping P :

P ≡ S−1PS (7.4)

reads:

P : Λ⇒ RL,f (ε) +O(εκπ)

χ⇒ β
Λ

RL,f (ε)
cos(χ+ Σ̃(ε, γ,Λ)) +O(εκπ)

(7.5)

with the following notations:

β ≡ C0MRL,f (ε)
εκπ

γ1/3
(7.6)

and:
Σ̃(ε, γ,Λ) ≡ θR(π/2)− θR(τ0) + Ω + φL,R(π/2, ε) + ξ(ε, γ) + ΦL(ε, γ,Λ) (7.7)
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The �rst terms in eq.(7.7) give (almost) the total θ - variation from −π/2 to π/2 (cf.eq.(5.48):

∆θ = θR(π/2)− θR(τ0) + Ω =

√
3√
ε

∫ π/2

−π/2
| sin t|1/3dt+ Θ0(ε) (7.8)

where Θ0(ε) has a �nite limit when ε → 0. For small ε eq.(7.5) shows that, under P, Λ is squeezed
to values near R0L(ε) (as is seen in Figs.8 and 9) and therefore the term ΦL(ε, γ,Λ) gets very close
to ΦL(ε, γ,RL,f (ε)). The factor RL,f (ε) has a limit RL,f (0) as ε → 0, independent of γ. (cf. Lemma
6.1 and Appendix D). The same is true for the quantity M (cf.(7.2) according to Lemma 6.4. It is
natural then to expect that the one-dimensional mapping of the unit circle into itself:

Π : χ⇒ β cos(χ+ Σ) (7.9)

with
Σ ≡ ∆θ + φL(π/2, ε) + ξ(ε, γ) + ΦL(RL,f (ε), ε, γ) (7.10)

contains the essential features of the bifurcation structure of the mapping P, eq.(7.5) and thus of P.
In the following subsection we present some relevant features of this mapping, which is otherwise well
studied [Zeng & Glass, 1989][Collet & Eckmann, 1983](this is the standard reference on one-dimensional
mappings; however, the map (7.9) falls a little outside the class of maps considered there.).In the next
section, we discuss its relation to the real Poincaré mapping of the Du�ng equation P of (7.5).
Clearly, the mapping Π may show a bifurcation structure in the region of parameter space where

β = O(1). This justi�es some of the statements made before concerning the orders of magnitude
coming into play (see comments following eq.(7.1b) and eq.(6.56) above). Referring to the discussion
of Section 6.3, especially to that accompanying Figs.8 and 9, it is easy to give a "`physical"' rationale for
the parameter β: in a τ -time interval of order 1/γ the motion is (almost) hamiltonian and the original
disk (ellipse) in the (u(0), du/dτ(0) plane with radius of O(εκπ) is stretched into an increasingly thin
�lament of increasing angular aperture wrapping itself around a circle of radius RLf (ε). The angular
aperture is increasing at the rate θ1/4 (cf.eq.(6.32)), where:

θ ≈
√

3

∫ τ

τ ′1/3dτ ′ ≈ 3
√

3

4
τ4/3

In terms of θ the τ -time 1/γ is O(1/γ4/3) so that the original aperture of O(εκπ) becomes in a τ−time
1/γ of O(εκπ × 1/γ1/3) which is precisely the order of magnitude of β in (7.7). At τ -times larger than
1/γ the angular aperture does not increase any more considerably, but the area of the "`wrapped"'
rectangle decreases simply due to the damping by a factor ≈ εκπ.

7.2. The circle map Π

In this section we gather some properties of the map Π of eqn.(7.9).Clearly its features are periodic in
Σ. From the de�nition of the latter in eqn.(7.10) the dominant term for small ε is ∆θ of (7.8) which
behaves like 1/

√
ε, i.e. like Γ1/3. Thus, we expect the bifurcation pattern in the Γ−∆ plane to have

at high forcing an increasingly better periodicity in Γ1/3. At �xed ε, β decreases with increasing γ, i.e.
with increasing ∆. For a comparison with "`normal"' bifurcation plots, we draw bifurcation lines in a
Σ− (−β) plane.
(i)For β < 1 (high damping), the equation:

β cos(χ+ Σ) = χ (7.11)

has, for all Σ, only one solution χs. This solution is a stable �xed point of Π since |dΠ/dχ(χs)| < 1.
Even more,
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Lemma 7.1 The solution χs of (7.11) is the only invariant set under Π if β < 1

Indeed, |dΠ/dχ| < 1 for all χ, so that the distance between any two χ1, χ2 is contracted under Π if
β < 1:

|Π(χ2)−Π(χ1)| ≤ sup
χ∈(χ1,χ2)

|Π′(χ)||(χ2 − χ1)| ≤ |(χ2 − χ1)| (7.12)

Thus, the sequence of all iterates of any χ under Π converges (to χs). (ii)If β < π, Π maps the
interval (−π, π) into itself, so that the theory of iterated mappings of intervals, as presented in Collet &
Eckmann [1983] and Guckenheimer & Holmes [1983] may be directly taken over. If Σ = 0, the mappings
Π(β, 0) are unimodal in the sense of Collet & Eckmann [1983]. The mappings Π(β,Σ = −π/2) apply
[0, π],[−π, 0] into themselves and - if restricted to these intervals - make up a full family of unimodal
maps[Collet & Eckmann, 1983, �III.1,p.174], for 0 < β < π. Moreover, for all values of Σ, the functions
Π(β,Σ)(χ) have a negative Schwarz derivative:

Sf ≡ f ′′′
f ′
− 3

2

(
f ′′
f ′

)2

< 0 (7.13)

For unimodal families with negative Schwarz derivative there exists a sequence of values β1 < β2...
which accumulates at a value βc < π and for which there exist superstable orbits of period 2p. For
β = βc there exists a (nonperiodic) attracting Cantor set for the action of Π(β,−π/2). For larger
values the motion may be "`chaotic"' (with sensitive dependence on the initial conditions). Thus, we
expect that chaotic motion occurs in the Du�ng equation before (i.e. at smaller β) the Poincaré
map covers the whole angular range 0 < φ < 2π (cf.Fig.9). Even without the restriction to unimodal
maps,i.e. for arbitrary choices of Σ,condition (7.13)places restrictions on the possible invariant sets of
Π (see Lemma 7.2 below). (iii)At some �xed values of Σ, if we increase β, we reach a value beyond
which eqn.(7.11) admits of three (or more) solutions. The limiting values βS are those for which the
line Π = χ is tangent to the graph of Π(χ), i.e.

χS = βS cos(χs + Σ)

1 = −βS sin(χs + Σ)
(7.14)

It follows that:
β2
S = 1 + χ2

S ≥ 1 (7.15)

and thus βS = 1 only if χS=0; eqns.(7.14) imply then Σ = −π/2 (mod 2π). The bifurcations occuring
when β = βS are - if Σ 6= −π/2 - of saddle-node type : at neighboring larger values of β, two more
solutions appear,corresponding to a stable and an unstable orbit of period 1 (under the action of Π).
If Σ = −π/2, the bifurcation at β = 1 is of the pitchfork type: the unique solution existing at β < 1
loses its stability and a pair of stable solutions of period 1 appear at β > 1.
(iv) From (7.14) one can obtain the exact form of the bifurcation line β = βS(Σ).Near β = 1 it has

a cusp: indeed, let in eq.(7.14) Σ = −π/2 + σ so that (7.14) implies:

tan(χS + σ) = χS (7.16)

For small χS and σ this means, using (7.15):

χS(σ) ≈ (3σ)1/3 βS(σ) ≈ 1 + (3σ)2/3 (7.17)

which shows the cusp behaviour. Fig.11 shows the saddle-node bifurcation lines in a Σ − (−β) plane
(with an origin for Σ de�ned mod(2π).
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Figure 11: The bifurcation lines in the Σ− (−β) plane

(v)If at a �xed point χF of Π(χ), dΠ/dχ(χF ) = −1, the map Π has a �ip bifurcation24, if certain
transversality conditions are obeyed. In this case, these latter25 are at �xed Σ simply: χ2

F + 2 6= 0,
χ2
F + 2/3 6= 0. The analogon of (7.14) is now:

χF = βF cos(χF + Σ)

1 = βF sin(χs + Σ)
(7.18)

from which one sees that βF (Σ) ≥ 1, with equality only if χF = 0, which occurs at Σ = π/2.
(vi)Eqn.(7.18) allows an exact determination of the �ip bifurcation lines, see Fig.11. Their maximum

at the line β = 1 is quadratic, which may be easily seen as follows: let Σ = π/2 + σ so that (7.18)
implies:

tan(χF + σ) = −χF (7.19)

from which, for small χF , σ, one deduces:

χF (σ) = −σ
2

+O(σ3). (7.20)

Then (7.18) leads to (cf.(7.15)):

βF (σ) ≈ 1 +
σ2

8
(7.21)

(vii)The �ip bifurcation curves are much broader than the saddle-node ones (see Fig. 11). We give
a simple estimate of the ratio of their widths (measured at the points where they intersect with the
smallest values of β): at such points with coordinates (Σ0, β0), the four equations (7.14), (7.18) (for
the four unknowns Σ0, β0, χ0

S , χ
0
F ) imply:

χ0
F = ±χ0

S = ±
√

(β0)2 − 1 (7.22)

We look for solutions with β0 < π, which means that |χ0
F |, |χ0

S | < π. The second of each pair of eqns.
(7.14),(7.18) exclude in turn the possibility χ0

F = χ0
S . From each of the pairs (7.14),(7.18) one deduces

that:
cot(χ0

F + Σ0) = χ0
F = −χ0

S = cot(χ0
S + Σ0) (7.23)

24see Guckenheimer & Holmes [1983, ch.III,Theorem 3.5.1]
25Conditions (F1) and (F2) in Guckenheimer & Holmes [1983]
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so that:
χ0
F = χ0

S(modπ)

With (7.22) this is possible only if χ0
S = ±π/2, χ0

F = ∓π/2. If χ0
S = π/2,(7.23) and (7.14) imply

Σ0 = − arctan(π/2) (mod 2π). If χ0
S = π/2, the solution accepted by (7.14) is Σ0 = π + arctan(π/2)

(mod 2π).The ratio ρ of the length of two consecutive intervals between possible values of Σ0 is:

ρ =
π − 2 arctan(π/2)

π + 2 arctan(π/2)
≈ 0.22 (7.24)

(viii)At a larger value of β, β2(Σ) the orbits of period two which appeared at the �ip bifurcation
described above undergo another period doubling bifurcation. Fig.11 shows the results of a numerical
calculation of β2(Σ). As is well known in many instances, one can �nd values β4(Σ), β8(Σ) at which
further bifurcations to periodic stable solutions of period 4,8..etc. occur. For Σ = 0, one obtains
β2 = 1.8271, β4(0) = 1.9429, β8(0) = 1.9674...
(ix)For a complete description of the situation, one needs also an argument that, at least for values

of β not too large, the mapping Π contains no other invariant sets apart from the �xed points (or orbits
of period 2,etc.) described above. Because the family Π(β,Σ) does not fall entirely under the classes of
one-dimensional mappings described in Collet & Eckmann [1983] and Guckenheimer & Holmes [1983],
we give a statement which guarantees the (expected) absence of supplementary invariant sets for small
enough β:

Lemma 7.2 Let β2u(Σ) be the second positive root (i.e.di�erent from −Σ) of the equation:

Π(β,Σ;χ = β) = β cos(β + Σ) = −Σ (7.25)

if Σ < 0 and the positive root of (7.25) if Σ > 0 (−π < Σ < π). Let β2d(Σ) be the second positive root

(i.e.di�erent from π + Σ) of :

Π(β,Σ;χ = −β) = β cos(−β + Σ) = −π − Σ (7.26)

if Σ < 0 and the �rst positive root of

Π(β,Σ;χ = −β) = β cos(−β + Σ) = π − Σ (7.27)

if Σ > 0. Let:
βe(Σ) = min[π, β2u(Σ), β2d(Σ)] (7.28)

Then, for 0 < β < βe(Σ) the invariant sets of Π(β,Σ) consist of at most three �xed points and two

orbits of period two.

The proof of this statement is relegated to Appendix F, because it is not very short; it uses the property
of Π to have a negative Schwarz derivative (7.13) and owes a lot to the presentation in ch.III of Collet
& Eckmann [1983]. The conditions (7.25),(7.26),(7.27) describe superstable orbits of period two (i.e.
orbits which pass through the maximum β or the minimum −β of Π(β,Σ;χ)).If,e.g. Σ < 0, the
maximum and minimum of Π occur at χM = −Σ, χm = −π − Σ in turn, Π(χM ) = β, Π(χm) = −β:
eq.(7.25) states that the iteration of χm under Π should repeat itself after two steps. For the root
β1u ≡ −Σ of (7.25) the �xed point of Π lies on the maximum of Π(χ) (and on the minimum for
β1d ≡ π + Σ in (7.26).
This closes the qualitative discussion of the mapping Π.
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8. The Bifurcations of Periodic Solutions at Large Γ(ε→ 0)

8.1. The bifurcations of Π in the Γ−∆ plane

Instead of the parameters Γ,∆, we can use β(ε, γ), Σ(ε, γ) of eqns.(7.7),(7.10).If we believe that the
map (7.9) reproduces the main features of the Poincaré map P, then the tips of the bifurcation curves
lie - alternatively saddle-nodes and odd-periodic - simply periodic(�ip) - along the line β = 1. Above
certain critical values of β - we denote them by β̂ - there appear bifurcations to orbits with higher
period. Assuming ε is so small that R0L(ε),M(ε) may be replaced with their limiting values at ε = 0
(from eqns. (5.53) and (6.55)M0 = 0.6814), we obtain for the asymptotic form of the bifurcation lines
of (7.9):

∆c(Γ) =
1

12π
ln Γ− 1

3π
ln ln Γ− 1

π
ln

β̂

M0RL,f (0)C0
+O(

ln ln Γ

ln Γ
) (8.1)

with RL,f (0) of Lemma 6.1 and C0 of eq.(6.48). Fig.12 gives an idea of the appearance of the lines

β = β̂ in a ∆/ ln Γ vs. ln Γ plot, with β̂ = 0.8,1(solid) and 2 and of the asymptotic approximation
(dotted) of (8.1). The bifurcation structure of Π, eq.(7.9) is periodic in Σ, i.e. the bifurcation pattern
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Figure 12: The lines β=0.8,1(solid) and 2 and the approximation (8.1) to β = 1,(dots)

repeats itself along lines of �xed κ (eq.(1.21) in intervals ∆Γ obeying:

Σ(Γ + ∆Γ, κ ln(Γ + ∆Γ))− Σ(Γ, κ ln Γ) = 2π (8.2)

The dominant term in Σ, eq.(7.10) is ∆θ, eq.(7.8), which is proportional to 1/
√
ε, i.e. to Γ1/3

(cf.eq.(1.7). If 1/
√
ε is much larger than γ−1/3 - the magnitude of the second term φL,R(π/2, ε)

in (7.10)- the pattern repeats itself in equal intervals of Γ1/3, independently of κ. The period is:

∆(Γ1/3) =
2π√

3

1∫ π/2
−π/2 | sin t|1/3

dt ∼= 2.804 (8.3)

Since the maxima of the saddle-node and �ip bifurcation lines occur at Σ = −π/2, π/2 (mod2π), they
are asymptotically equidistant in Γ1/3 as shown in eq.(1.6). At smaller values of κ (or smaller values
of ε) periodicity in Γ1/3 is still the dominant feature but the shape of the bifurcation lines is distorted.
Fig.13 shows the appearance of the lines Σ(ε, γ) = const in a ∆/ ln Γ vs. Γ1/3 plot (the horizontal line
is β(ε, γ) = 1). We now show that near β = 1 the bifurcation structure of P must reproduce the one
of Π if Γ is su�ciently large (ε su�ciently small).
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Figure 13: The lines Σ = const after inclusion of the other terms in (7.10)

8.2. Inferences from Π to P

The mapping P, eq.(7.5) is equivalent to P and may be written in components (PΛ,Pχ):

Λ⇒ RL,f (ε) + εκπG(Λ, χ, ε, γ) ≡ PΛ(Λ, χ, ε, γ) (8.4a)

χ⇒ β(ε, γ)
Λ

RL,f (ε)
cos(χ+ Σ̃(λ, ε, γ)) + εκπH(Λ, χ, ε, γ) ≡ Pχ(Λ, χ, ε, γ) (8.4b)

Σ̃(Λ, ε, γ) ≡ Σ(ε, γ) + ΦL(Λ, ε, γ)− ΦL(RL,f (ε), ε, γ)) (8.4c)

where G and H are di�erentiable functions of Λ and χ, bounded and with bounded derivatives (up to
the third order) with respect to Λ,χ as ε → 0 (uniformly with respect to κ, as long as κ > κ0 > 0).
The di�erence ΦL(RL,f )−ΦL(Λ) in (8.4c) is proportional to Λ2−R2

L,f and thus, using (8.4a), to εκπ.
It is convenient to regard in (8.4a), (8.4b) the quantity εκπ multiplying the functions G and H as an
independent parameter q which may be set equal to zero (and obtain thus the mapping Π, eq.(7.9) or
to εκπ (to obtain P). With the assumptions concerning the functions G and H in (8.4a), (8.4b) the
approach of P to Π as q → 0 is uniform with respect to χ,Λ, β ∈ [0, 2π] × [0,ΛM ] × [β−, β+], where
ΛM is an upper bound on Λ, as derived in Section 4.1 and β− < 1, β+ > 1 surround β = 1. As a
consequence, we shall show generally that the properties of the circle map Π are carried over into those
of the complete mapping P for q su�ciently small, at �xed ε; we may replace then the phrase "`as
q → 0"' with the one "`as ε→ 0"' using the approximate periodicity in Σ of Pχ, eqn.(8.4b. Indeed, if
some property holds "`for q < q0"', it will be true for all ε < q

1/(κπ)
0 . In the process of letting q → 0

and choosing a correspondingly small ε, we assume �rst β = const. With this, it is easy to show:

Lemma 8.1 If χ0 is a �xed point of Π ,eq.(7.9), with dΠ/dχ(χ0) 6= 1, then, for su�ciently small ε,
P also has a �xed point (Λ̃0, χ̃0) so that:

|Λ̃0 −RL,f |, |χ̃0 − χ0| = O(εκπ) (8.5)

The argument - essentially the same as for the implicit function theorem - uses the periodicity of Π with
respect to Σ and the fact that Pχ tends to Π as ε→ 0. First, for any χ the equation PΛ(Λ, χ, q) = Λ
has a solution Λ = Λ(χ, q) contained in (RL,f (ε) − qM,RL,f (ε) + qM) where M is an upper bound
for |G(Λ, χ)| of (8.4a). Indeed, the function PΛ(Λ, χ)−Λ is monotonical with respect to Λ for small q
and assumes opposite signs at the ends of the interval. The function Λ(χ, q) is di�erentiable and

dΛ

dχ
= −∂PΛ/∂χ

∂PΛ/∂Λ
= O(q) (8.6)
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Let now δ > 0 be such that: |dΠ/dχ(χ0)− 1| > δ and χ−, χ+ so that χ0 ∈ (χ−, χ+) ,

|Π(χ+/−)− χ+/−| > δ (8.7)

and

|dΠ

dχ
(χ)− 1| > δ, χ ∈ (χ−, χ+). (8.8)

Using in Pχ(Λ, χ, q) the function Λ(χ, q) of (8.6), we evaluate (cf.(8.4c):

|Pχ(χ,Λ(χ))−Π(χ)| < |β(
Λ

RL,f (ε)
− 1) cos(χ+ Σ̃)vert

+ |β cos(χ+ Σ̃)− β cos(χ+ Σ)|+O(q).

(8.9)

Both di�erences appearing on the right hand side of (8.9) may be made as small as one wishes by
allowing q to be su�ciently small. In particular, the left hand side may become less than δ/2 with a
choice of q valid uniformly with respect to κ, provided κ > κ0 > 0 and with respect to χ ∈ [0, 2π].
Indeed, one estimates (cf.eq.(8.4c)):

ΦL(Λ)− ΦL(RL,f (ε)) < const× (Λ2 −R2
L,f )

β

RL,fM
1

κ2/3(ln(1/ε))2/3)
= O(

q

κ
2/3
0

) (8.10)

We conclude from (8.7) and (8.9) that the function Pχ(Λ(χ), χ, q) − χ changes sign between χ− and
χ+. It is also monotonical there, if q is small enough. Indeed,the di�erence

|dPχ
dχ
− dΠ

dχ
| =
∣∣∣∣dΛ

dχ

∣∣∣∣ ∣∣∣∣PΛ − β Λ

RL,f (ε)
sin(χ+ Σ̃(Λ))

dΦL

dΛ

∣∣∣∣
+ β

Λ

RL,f (ε)

∣∣∣sin(χ+ Σ̃(Λ))− sin(χ+ Σ(Λ))
∣∣∣+O(q)

(8.11)

may be rendered as small as one wishes, upon using (8.6),(8.10), in particular smaller than |1 −
dΠ/dχ(χ)|, cf.(8.8). Thus for q small enough, |dPχ/dχ − 1| 6= 0. It follows that, as announced,
Pχ(Λ, χ)− χ vanishes just once between χ− and χ+. This proves Lemma 8.1.
Assume now Π(χ) has several �xed points with χi with dΠ/dχ(χi) 6= 1. Choosing for every χi

corresponding intervals (χ−, χ+) as in (8.7), we may assume - using the uniformity of the approach of
Pχ to Π - that (8.7) is valid at all points of [0, 2π] which lie outside the union of these intervals. We
call this union Iδ. Then, by letting q be small enough, we may ensure that:

|Pχ(Λ, χ)− χ| > |Π(χ)− χ| − |Pχ(Λ, χ)−Π(χ)| > δ/2, (Λ, χ) ∈ [0,ΛM ]× CIδ (8.12)

Further,
|PΛ(Λ, χ)− Λ| > 0, χ ∈ Iδ, Λ /∈ (RL,f − qM,RL,f + qM) (8.13)

as follows from the de�nition ofM . But in each component of the remaining domain (RL,f−qM,RL,f+
qM)× Iδ,according to the argument of Lemma 8.1 above, the equality :

|PΛ(Λ, χ)− Λ|+ |Pχ(Λ, χ)− χ| = 0

holds at only one point (Λ, χ), which is the "`evolution"' with q of the �xed point of the circle map Π.
We conclude thus:

Lemma 8.2 For ε su�ciently small, the �xed points of the complete mapping P are in one-to-

one correspondence with the �xed points χi of the circle map Π, provided the latter are such that

|dΠ/dχ(χi)− 1| > δ, for some δ > 0.
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Since only continuity arguments are involved, the same result is true for iterates of any order p of P,
when compared to the iterates Πp of the circle map. Also, if Π(χ) has an attracting/repelling �xed
point with an eigenvalue of the linear part su�ciently far from unity, the eigenvalue of the linearization
of P around the corresponding �xed point is also smaller/larger than unity. It is easy to ascertain the
stability of eigenvalues of Π equal to unity (saddle-node bifurcations) in the transition to the complete
mapping P, if one allows for a further degree of freedom: we take it to be the variable β of (7.6)26.
When varying β, we assume the quantity Σ is held �xed. This is only approximately the same as
holding ε �xed: the departure is larger at smaller damping (see Fig.13). One can state:

Lemma 8.3 Let 2π − δ > |Σ + π/2| > δ > 0 and χ0, β0 so that Π(χ) ≡ β0Π0(χ) (cf.eq.(7.9),

Π0(χ) ≡ cos(χ+ Σ)) obeys:

β0Π0(χ0) = χ0, β0
∂Π0

∂χ
(χ0) = 1 (8.14)

Then, for q small enough, the set of equations

PΛ(Λ, χ, β, q) = Λ, Pχ(Λ, χ, β, q) = χ, det |I− DP| = 0 (8.15)

has a unique solution (Λ(q), χ(q), β(q)) which tends to (RL,f , χ0, β0) as q → 0.

The argument is almost the same as in Lemma 8.1. In view of the continuity of Pχ and its derivatives
as q → 0 it is true that: for any e > 0 we can �nd q0 so that at �xed Σ, for 0 < q < q0

|PΛ(Λ, χ, β, q)−RL,f |+ |Pχ(Λ, χ, β, q)− βΠ0(χ)| < e (8.16)

|∂ΠΛ

∂Λ
|+ |∂ΠΛ

∂χ
|+ |∂ΠΛ

∂β
| < e (8.17)

and

|∂Pχ
∂χ
− β∂Π0

∂χ
| < e, |∂

2Pχ
∂χ2

− β∂
2Π0

∂χ2
| < e (8.18)

for 0 < Λ < ΛM , β− < β < β+ and all χ. Further, the condition on Σ in the statement of the Lemma
ensures that χ0 stays away from 0, i.e. Π(χ) > d > 0 in a domain (χ,χ+) × (β−, β+) containing
(χ0, β0),for some d > 0. If e < d/2, it follows from (8.16) that |PΛ,χ,β,q| > d/2 > 0 on the same interval
in χ and β. As in Lemma 8.1, the �rst equation (8.15) determines for small q and all χ ∈ [0, 2π] a
unique solution Λ(χ, β, q), with ∂Λ/∂χ, ∂Λ/∂β of O(q) and |Λ(χ, β, q) − RL,f | = O(q) . With the
notation (similar to Π0 in (8.14), cf.eq.(8.4b))

Pχ ≡ βP0
χ + qH(Λ, χ, β,Σ) (8.19)

the second equation (8.15) is:

β − χ− qH(Λ(χ, β, q), χ, β,Σ)

P0
χ(χ,Λ(χ, β, q), q, β)

= 0 (8.20)

In (8.20),P0
χ depends on β also through the variable Σ̃ (cf.eqs.(8.10) and (8.4b)); from (8.10) it follows

that ∂Σ̃/∂β is O(Λ − RL,f ), i.e. O(q). Since |Pχ| > d/2 > 0 and β > β−, it follows that the partial
derivative of the left hand side of (8.20) with respect to β is 1 − O(q) so that (8.20) determines a

26The ε-dependence of the factors RL,f ,M in (7.7) is very mild and may be overlooked for all purposes; β is essentially
εκπ/γ1/3
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function β(χ, q) for χ− < χ < χ+, with ∂β/∂χ = O(1). The third equation (8.15) may be written
after rearrangements:

β

[
∂P0

χ

∂χ
−

(
∂P0

χ

∂χ

∂PΛ

∂Λ
−
∂P0

χ

∂Λ

∂PΛ

∂χ

)]
= 1− q

[
∂H

∂χ

∂PΛ

∂Λ
− ∂H

∂Λ

∂PΛ

∂χ

]
(8.21)

where we use β = β(χ, q). Since the derivatives of PΛ in (8.21) are O(q), the latter may be rewritten
as:

β

[
∂P0

χ

∂χ
+O(q)

]
= 1 +O(q) (8.22)

From (8.20) and (8.22) we deduce:

χ
∂P0

χ

∂χ
− P0

χ −O(q) = 0 (8.23)

Now, at q = 0 eq.(8.23) has the solution χ = χ0. This solution is a simple zero of the combination
χ∂Π0/∂χ − Π0 because its derivative χ∂2Π0/∂χ2 is nonvanishing at χ0. This is a consequence of
∂2Π0/∂χ2 = −Π0 and of the condition on Σ. Therefore, this combination is monotonical on an
interval (χ−, χ+) around χ0, possibly included in the former, and acquires at the ends absolute values
larger than some d > 0, possibly smaller than the former. Choosing again e < d/2 we can �nd q0 so
that, for q < q0 (i)the right hand side of (8.23) has opposite signs at χ−, χ+ and (ii)its derivative has
a constant sign on (χ−, χ+) (as a consequence of the second equation in (8.18)). Thus there exists
only one solution χ(q) for every q su�ciently small and it approaches χ0 as q → 0 . This leads then to
solutions Λ(χ(q)), β(χ(q)) with the properties announced in Lemma 8.3 and ends the argument.
Since now β changes with q, one may wonder about the values of the forcing Γ (or ε) above (below)

which we may set εκπ = q (and thus replace "`small enough q"' with "`small enough ε"'. According to
Lemma 8.3, for q < q0, β(q) is contained in an interval [β−, β+]. For such values of β, the solutions
κ(ε, β) of the equation εκπ/γ1/3 = β are at �xed ε contained in an interval [κ−(ε), κ+(ε)] which shrinks
(logarithmically) to 1/(8π) as ε → 0. It is thus contained in an interval [κm, κM ] of κ-values. It is
enough to choose the upper limit of ε so that εκmπ = q0.
The invariant sets of P in the neighbourhood of (Λ(q), χ(q), β(q)) may be described completely using

the central manifold theorem, in the manner presented in Guckenheimer & Holmes [1983] and Marsden
& McCracken [1976] . Following the instructions of these references, we may state27:

Lemma 8.4 Let Σ be such that : 2π − δ > |Σ + π/2| > δ > 0. For q small enough, there exists a

neighbourhood U × V of (Λ(q), χ(q), β(q)),

U : {|Λ− Λ(q)| < A} × {|χ− χ(q)| < B} , V : {|β − β(q)| < C}

with A,B,C independent of q such that : if β < β(q), β ∈ V , U contains no invariant sets of Π̃; if

β > β(q) the invariant set consists of two points; if β = β(q), the only invariant set in U is (Λ(q), χ(q))

To see this, we introduce new coordinates

ξ1 ≡ Λ− Λ(q), ξ2 ≡ χ− χ(q), ξ3 ≡ β − β(q) (8.24)

centered at Ξ0 ≡ (Λ(q), χ(q), β(q)). The mapping P may be locally approximated by a Taylor expan-
sion:

PΛ : ξ1 ⇒
3∑
i=1

aiξi +

3∑
i≥j=1

aijξiξj + ...

Pχ : ξ2 ⇒ ξ3P0
χ(Ξ0) + b1ξ1 + (1− a2b1

1− a1
)ξ2 +

3∑
i≥j=1

bijξiξj + ...

(8.25)

27The exercise on p.25 of Marsden & McCracken [1976] is almost the same as this Lemma
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where a1, a2 are O(q), a3 even of O(q2) (cf.eq.(7.1a), where the dependence of β is concealed in Σ̃,
cf.also (8.4c)), aij are all of O(q),but nonvanishing(cf.eq.(7.1a)), P0

χ(Ξ0) ≈ Π0(χ0) 6= 0, the coe�cient
of ξ2 is 1 − O(q) and the bij are nonvanishing, as a consequence of the condition on Σ, and of O(1).
For small q, the coe�cient b22 is approximately ∂2Π0/∂χ2 6= 0. Let then ξ1′, ξ2′ be new coordinates
linearly related to ξ1, ξ2 so that the linear part in ξ1, ξ2 of (8.25) becomes diagonal. The �rst eigenvalue
is O(q); it is relevant that ξ1′ = O(1)ξ1 + O(q)ξ2 so that the orders of magnitude in the transformed
system:

P1 : ξ1′ ⇒ c1ξ1′+ a3′ξ3′+
3∑

i≥j=1

aij ′ξi′ξj ′

P2 : ξ2′ ⇒ ξ3′(P0
χ(Ξ0) +O(q)) + ξ2′+

3∑
i≥j=1

bij ′ξi′ξj ′+ ..

(8.26)

are preserved. In (8.26) we have set ξ3′ = ξ3. We enlarge P by adding to (8.26):

P3 : ξ3′ ⇒ ξ3′. (8.27)

The quantity a3′ is O(q), b22′ ≈ b22 and the bij ′ are O(1). It is possible to �nd an approximation to the
central manifold of the enlarged P (eqns.(8.26),(8.27)) (the invariant manifold tangent to the subspace
of eigenvalue unity) around Ξ0 in the form (see Guckenheimer & Holmes [1983, p.136])

ξ1′ = hI(ξ2′, ξ3′) = α22(ξ2′)2 + α23ξ2′ξ3′+ α33(ξ3′)2 + ... (8.28)

The coe�cients αij are obtained by equating the coe�cients of like powers of ξ2′, ξ3′ in the condition:

P1(hI(ξ2′, ξ3′), ξ2′, ξ3′) = hI(P2(hI(ξ1′, ξ2′, ξ3′), ξ2′, ξ3′), ξ3′) (8.29)

It turns out that the αij are all of O(q), as they are proportional to coe�cients appearing in P1.
According to the center manifold theorem (see Marsden & McCracken [1976, p.19]) all points in a
(su�ciently small) neighbourhood U × V of Ξ0 approach under iterations of P the center manifold,
which is itself invariant. Thus the only possible invariant sets of P are to be found by restricting the
action of P to it. Substituting then (eq.8.28) into the second equation (8.26) we obtain a description
of the bifurcations at Ξ0 :

P̂2(ξ2′, ξ3′) : ξ2′ ⇒ ξ3′(cos(χ(q) + Σ) +O(q)) + ξ2′(1 + b23′ξ3′) + b22′(ξ2′)2 +O(q)× h.o. (8.30a)

P̂3(ξ3′) : ξ3′ ⇒ ξ3′ (8.30b)

For q small enough, eq.(8.30a) describes a saddle-node bifurcation: for ξ3′ > 0, the equation ξ2′ =
P̂2(ξ2′, ξ3′), with P̂2 restricted to the quadratic part has no solutions for small ξ3′; it has one double
zero for ξ3′ = 0 and two solutions for ξ3′ < 0. Thus saddle-node bifurcations of the circle map are
transferred indeed to the complete mapping P at least for small q, i.e. for small ε.
We show that the same is true for �ip bifurcations. In strict analogy to Lemma 8.3 it is true that:

Lemma 8.5 Let 2π − δ > |Σ− π/2| > δ > 0 and χ0, β0 obeying (cf.Lemma 8.3):

β0Π0(χ0) = χ0, β0
∂Π0

χ0
(χ0) = −1 (8.31)

Then, for q small enough, the set of equations:

PΛ(Λ, χ, q) = Λ, Pχ(Λ, χ, q) = χ, det |I + DP| = 0 (8.32)

has a unique solution (Λ(q), χ(q), β(q)) which tends to (RL,f , χ0, β0) as q → 0.
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The argument is the same as in Lemma 8.3 with obvious changes of sign in (8.22) and (8.23). The
same transformations of variables as in Lemma 8.4 bring P locally in the form (8.26) with a minus
sign in front of ξ2 in the linear part of P2. We inquire next whether the �ip bifurcations survive the
transition from one to two dimensions (from Π to P):

Lemma 8.6 Let Σ obey: 2π−δ > |Σ−π/2| > δ > 0. For q small enough, there exists a neighbourhood

U×V of (Λ(q), χ(q), β(q)), U : {|Λ− Λ(q)| < A}×{|χ− χ(q)| < B}, V : {|β − β(q)| < C}, with A,B,C
independent of q and such that : if β ≤ β(q), β ∈ V , U contains just one invariant set of P ◦P , which

is also an invariant set of P; if β > β(q) the invariant set of P consists of one �xed point and one

stable orbit of period two.

One may doubt a priori that this is the case, since pitchfork bifurcations (as present in the mapping
Π◦Π) are not stable under perturbations in general. Nevertheless, the special features appearing from
the restriction to mappings of the form P ◦P allows a proof of the persistence of �ip bifurcations when
one moves from Π to P.
Expanding P around the point (Λ(q), χ(q), β(q)) of Lemma 8.5 the mapping P ◦ P may be written

with the notations of (8.24):

P2
1 : ξ1 ⇒ a1ξ3 + a2ξ1 + a11ξ

2
1 + a22ξ

2
2 + a13ξ1ξ3 + a23ξ2ξ3 + a33ξ

2
3 + ...

P2
2 : ξ2 ⇒ ξ2 + b11ξ

2
1 + b12ξ1ξ2 + b13ξ1ξ3 + b23ξ2ξ3 + b33ξ

2
3

+ d222ξ
3
2 + d223ξ

2
2ξ3 + d233ξ2ξ

2
3 + ...

P2
3 : ξ3 ⇒ ξ3

(8.33)

where the ai, aij are of O(q) or less, a2 > 0, a12 = 0, the bij are O(1), b22 = 0, b23 6= 0 (as q → 0
it approaches −∂2Π/∂β∂χ = 1/β0; ) and terms of O(ξ3) must be taken into account (to describe the
pitchfork); the coe�cient d222 6= 0 and has a nonzero limit as q → 0, as a consequence of the conditions
on Σ. In (8.33) we extended P2 through the addition of the identity concerning ξ3 (see Guckenheimer
& Holmes [1983]). Changing variables to:

ξ1 = ξ1′+
a1

1− a2
ξ3, ξ2′ = ξ2, ξ3′ = ξ3 (8.34)

causes the linear term a1ξ3 to disappear in the transformed equations. One looks for an invariant
manifold of P2 tangent to the plane ξ1′ = 0 in the form (8.28) above. From an equation analogous to
(8.29) one determines the coe�cients αij which turn out to be of O(q) or smaller. Replacing ξ1 as a
function of ξ2, ξ3 in the second equation (8.33) one obtains a description of the invariant sets in the
approximation (8.28) of the center manifold of the extended system (8.33):

B23ξ2ξ3 +B33ξ
2
3 +B222ξ

3
2 + ξ3O(ξ2

2 , ξ2ξ3, ξ
2
3) +O(q)(ξ4

2 + ...) = 0 (8.35)

where B23, B33 are corrections of O(q) to b23, b33 of (8.33) and are of O(1), B222 is a correction of O(q)
to d222 in (8.33), the magnitude of the coe�cients of the other cubic terms is O(1); it is essential that
no terms with ξ2

2 appear, even of O(q): these would destroy the "`pitchfork"'; there are terms of O(ξ4
2)

multiplied by O(q), but these are harmless. The prime on ξ2, ξ3 has been dropped in (8.35), in view of
(8.34). At ξ3 = 0 (8.35) reduces to :

B222ξ
3
2 +O(q)ξ4

2 = 0 (8.36)

which shows the triple zero at ξ2 = 0 and another zero far away. A solution of (8.35) which is analytic
in ξ3 may be obtained formally by writing:

ξ2 = e1ξ3 + e2ξ
2
3 + ... (8.37)

55



and identifying coe�cients; one obtains e1 = −B33/B23, etc. There exist also two other solutions
analytic in

√
ξ3 which are the continuations in ξ3 of the other zeroes of (8.36): letting in (8.35) ξ3 = x2

and substituting there:
ξ2 = f1x+ f2x

2 + ... (8.38)

one determines f1 as one solution of:

B23f1 +B222f
3
1 = 0 (8.39)

The solution f1 = 0 leads to (8.37). The coe�cients B23,B222 are corrections of O(q) to the derivatives

∂2Π/∂β∂χ, ∂3Π/∂χ3 at (χ0.β0): these are ≈ −1/β0, 1 in turn. Thus, f1 ≈ ±β−1/2
0 . This shows that

indeed, for ξ3 < 0 there exists just one solution of (8.35) but there are three solutions for ξ3 > 0, i.e.
a "`pitchfork"'. This ends the argument for Lemma 8.6.

8.3. Conclusions

In the statements of Lemmas 8.3 - 8.6, the values of Σ lying near the peaks of the saddle-node and �ip
bifurcation curves (see Fig. 11) were excluded. With this exception, we can conclude this section with

Theorem 8.1 If β > βe(Σ) of Lemma 7.2, the invariant sets of the half - period Poincaré map

P(β,Σ,Λ, χ) of Du�ng's equation consist, for su�ciently large Γ of �xed points and periodic points

of period two only - with the possible exception of small neighbourhoods, vanishing as Γ increases, of

points (β = 1,Σ = ±π/2). These invariant points are in one-to-one correspondence with those of the

circle map Π(β, χ,Σ) of (7.9) and approach the latter as Γ→∞ (ε→ 0). The bifurcation lines βF (Σ),
βS(Σ) approach those of Π in this limit.

The restriction to the domain of large β is arti�cial: one can extend the argument and show the
stability in the transition Π⇒ P(≡ P) of the period doubling cascade and - presumably - of the limiting
chaotic motion. This gives a natural explanation for the chaotic behaviour observed a long time ago
in the damped and forced Du�ng oscillators. Theorem 8.1 also gives a complete understanding of the
regularities observed in the bifurcation pattern of Du�ng's equation at large forcing and (moderately)
high damping.

9. Comments and conclusions

It is apparent that an important ingredient in the justi�cation of the bifurcation structure of eq.(1.1)
(or eq.(1.8)) is the sudden change of "`natural"' reference at t = 0 in the description of the motion. This
is brought about by the discontinuity occurring at t=0 when passing from the left hand reference XL(t)
to XR(t) (see Fig.2). The continuation of XL(t) to t > 0 is oscillatory (see Fig.6) because (intuitively)
a particle moving for t<0 at the bottom of the potential well x4/4 − x sin t (cf.eq.(1.8))cannot follow
the in�nite velocity of the minimum at t = 0. The particle behaves as if it had been subjected to a
"`kick"'. In a series of papers by Parlitz [1993] and Parlitz et al. [1991a,b], the authors show that an
in�nite sequence of bifurcation curves occur in a very simple "`kick and twist model"', described by
the di�erential equations (x = r cosα, y = r sinα, d>0):

ṙ = −d
2
r α̇ = 1 + r2 (9.1)

supplemented by a periodic "`kick"', i.e. a displacement of the y coordinate by an amount a at equally
spaced time intervals T. The control parameters are the amplitude a and the period T.
For Du�ng-type equations Eilenberger & Schmidt [1992] give a simple and elegant argument that

for a real sudden change of the forcing at t=0 (obtained by replacing sin t on the right hand side of
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(1.8) by a step function) a nonlinear dependence of the restoring force on the displacement x(t) leads
naturally at su�ciently high damping to a (half-period) Poincaré map of the form (1.4) or (7.9), i.e.
to a "`circle map"'. The latter describes accurately the bifurcation structure of the Du�ng equation
at high forcing and damping. The critique to this argument is obviously that there is in (1.8) or
(1.9) no real discontinuous change of forcing (no real "`kick"'[Eilenberger & Schmidt, 1992])at t = 0:
the change of reference is only a convenient artefact. As is apparent from Section 6, see Fig.8 or
Fig. 9, the development of the circle map occurs actually in a short time interval τ = O(1/γ) near
t = 0. In the limit Γ → ∞ this interval becomes in�nitely short compared to the whole interval
[0, π/2] (actually O(1/ ln(1/ε) compared to it) but is in�nitely long (O(1/(ε3/8 ln 1/ε))) compared to
the boundary layer, where τ (cf.eq.(1.18)) is O(1) (this is the -somewhat enlarged - transition region
of Schmidt & Eilenberger [1998] where the inner and outer expansions are matched, see Sect. 3).
The following is a qualitative argument for the appearance of the circle map as an approximation

to the half-period Poincaré map - relating t = −π/2 to t = π/2 -, as it emerges from the discussion
in Sects. 5 and 6. The discussion ignores the di�culties related to the changes of variable between τ
and θL,R of (4.2) and assumes they can be performed all the way down to t = 0. In the time interval
[−π/2,−τ0ε

3/8−s], s > 0 the motion around the left hand reference solution is essentially harmonic in
the variable θL, eq.(4.2) i.e. with a period independent of the amplitude. According to Lemma 5.2
there exists an additional phase proportional to the square of the amplitude at t = −π/2 which is a
cause of the distortions shown in Fig.5. To these, we have to add the displacements appearing when
we get into the boundary layer down to t = 0 where the motion of solutions in the vicinity of XL(t) is
approximately described by the linear equation (5.39).Fig.5 testi�es however that the distortion of the
small disk at t = −π/2 in the t = 0 plane is not a huge e�ect, so that we make the rough approximation
that harmonic motion is dominant and thus all initial phases ψi - measured around XL(t) at t = −π/2
- have increased at t = 0 by the same amount a, independent of the amplitude:

ψ(0) = ψi + a (9.2)

At t > 0 the motion consists essentially of rotations around the right hand reference solution XR(t).,
The angular velocity has an harmonic (amplitude-independent) term in the variable θR, eq.(4.2)

and (to a �rst approximation) a second term which decreases with θR like 1/θ
3/4
R and is propor-

tional to the square of the amplitude (of the distance from the origin in the w, dw/dθ plane, see
eqs.(6.15a),(refeq:6.14b). This latter term is the prominent e�ect of the nonlinearities in (1.1). Its
e�ect is limited to a time τ < 1/γ, after which the motion is essentially harmonic. The �nal value ψf
of the angle at t = π/2 is the value of the rotation angle around XR(t) between t = 0 and π/2. Thus,
for a solution rotating at distance R from XR(t) (with R measured in units of ε1/8),

ψf =
A√
ε

+
BR2

γ1/3
+ C (9.3)

The �rst term is common to all solutions and is the e�ect of the harmonic part: 1/
√
ε is the order of

magnitude of t = π/2 when expressed in the variable θR, eq.(4.2). The second term is the integral over

θ
−3/4
R up to τ = 1/γ; since θR ≈ τ4/3 a time τ = 1/γ corresponds to θR ≈ 1/γ4/3. The third term is
the contribution to the rotation angle of times larger than 1/γ and is again independent of the chosen
solution.
The continuation to t > 0 of the left hand reference solution XL(t) also rotates around XR(t) at a

distance RL from it (cf.Fig.6) and achieves at t = π/2 a total rotation (9.3) given by an angle denoted
by ψf,L. Neighbouring solutions with a distance RL + δR to XR(t) acquire a rotation angle:

ψf (δR) = ψf,L +
2BRLδR

γ1/3
(9.4)
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We assume RL is constant down to t = 0. A solution starting at t = −π/2 close enough (i.e.
O(ε3/16+κπ/2)), cf. Theorem 4.1) to XL(t) with an angle ψi to the x-axis ends up at t = 0 in a disk of
radius r = O(εκπ+1/8) = O(e−∆πε1/8) around XL (cf.eqns.(5.52a),(5.52b)) and in a position enclosing
an angle ψ(0), eq.(9.2) with the x-axis. Its distance to XR(0) is:

RL + δR =
√
R2
L + r2 + 2RLr cos(ψ + a) ≈ RL + r cos(ψi + a) (9.5)

which gives an estimate of δR. Substituting in (9.4) one obtains the circle map, which gives the angle
ψf at t = π/2 in terms of ψi at t = −π/2:

ψf = ψf,L +
const× εκπ

γ1/3
cos(ψi + a) (9.6)

This mapping is equivalent to the form (1.4) or (7.9) (cf.Sect.7.1).The whole paper is actually devoted
to the justi�cation of this qualitative picture in a correct manner.
The role of the nonlinearities may be appreciated if one compares eq.(1.8) with a (possible) linear

version of it:
εẍ+ 2µẋ+ x = (sin t)1/3 (9.7)

which has, for all ε,µ a unique periodic solution. One can perform for it the same analysis with inner
and outer expansion as for (1.8)28. The di�erence u(t) ≡ x(t) − xL(t) to a corresponding reference
solution xL(t) obeys the equation of a linear damped harmonic oscillator;the latter transforms a small
disk u2 + u̇2/ε < r2 at t = −π/2 into a disk of radius smaller by a factor εκπ at t = π/2 (around a
corresponding reference xR(t)), almost without change of shape (to �rst order in µ/

√
ε). The di�erence

in rotation angles for di�erent amplitudes, as expressed by (9.4) in the nonlinear case, is zero.
The author believes it is a special virtue of the averaging method of Bogolyubov & Mitropolski

[1961] that it allows a systematic and easily interpretable treatment of the nonharmonic behaviour in
the small |t| domain (the "`transition region"' of Schmidt & Eilenberger [1998]). In fact, use of this
method makes up the main di�erence between the treatment of my earlier internal report[1990] and
of the present work to that of the papers of G.Eilenberger and K.Schmidt[1992],[1998]. The analysis
of these authors is based on the adiabatic theorem of classical mechanics [Arnold, 1978], [Landau &
Lifshitz, 1960], applied to the motion described by eq.(1.9) around the reference ("`creeping"') solutions
XL(t

√
ε), XR(t

√
ε)29.It is not so easy to extend the adiabatic approximation to the region of small |t|

in such a manner that it matches there to the boundary layer description of the motion, given to
zeroth order by eq.(3.24a). This is done by a method of time-dependent canonical transformations,
specially devised fot this purpose and presented in the Appendix B of Schmidt & Eilenberger [1998].
The procedure is claimed to be numerically successful but it is di�cult to identify in it the various
terms given by the averaging method of Sects. 5.1 and 6.
Both the work of G.Eilenberger and K.Schmidt[1992; 1998] and the present one (with its earlier ver-

sion) rely on a Taylor expansion to �rst (or second order) of the Poincaré map around the continuation
of the left hand reference solution to t > 0.This statement may not be obviously valid for the work
of Eilenberger & Schmidt because of the di�erent formulation of the Poincaré map, but a moment's
consideration shows that it is implied in eqns.(5.8),(5.9) of Eilenberger & Schmidt [1992] and in eq.(24)
of Schmidt & Eilenberger [1998] . The reason why a Taylor expansion is expected to be su�cient is
that the magnitude of the small disk of radius εκπ/2+3/16 is further reduced by a factor30 εκπ/2 at t = 0,
so that one is interested in a "`really"' small neighbourhood of the continuation of XL(t) at t > 0.
For given ∆ and Γ in the large ∆−Γ region considered here (or ε and µ in the corresponding domain)

one determines numerically the coe�cients of this expansion (as in Schmidt & Eilenberger [1998]) or

28inner variables X, τ may be de�ned through x ≡ ε1/6X, t = ε1/2τ
29the latter are introduced in a manner similar to this paper and to the work of Byatt-Smith [1987]
30the factor ε3/16 disappears through rescaling and Liouville transformation
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integrates the variational equation aroundXL(t) from t = 0 to t = π/2, as analyzed (in principle) in this
work (and in the earlier report);the advantage of the latter method is that the averaging transformations
allow several statements about the solutions (see Sect.6.2), especially about their behaviour as ε→ 0.
Really "`universal"' numerical constants appear only in this limit (cf.eqns.(6.45),(6.46)). They are
determined by the boundary layer equations in the limit γ → 0.This paper devotes much attention
to the justi�cation of these limits (see Lemma 6.4), the reason being that not all of them exist : see
eqns.(6.55),(6.56). It is in fact the equilibrium between this divergence and the magnitude of the small
disk at t = 0 (see Fig. 5) which is responsible for the onset of bifurcations as the damping decreases at
�xed Γ. Unfortunately a similar discussion appears to be absent in the work of Eilenberger & Schmidt.
It is remarkable that the circle map - which comes from the �rst order Taylor expansion - turns

out, according to the numerical evidence of Schmidt & Eilenberger [1998], to have a large domain of
validity - at least qualitatively - in the Γ −∆ plane, not limited to values of the damping increasing
logarithmically with the forcing (as assumed in this paper). It is an open question to what extent
(down to which value of the damping ∆) the very rich bifurcation structure of the circle map is indeed
transferred to the highly complex bifurcation diagram of the Du�ng equation in the Γ − ∆ plane.
The arguments of Sect.8.1 only show that the transfer of the upper part of the bifurcation curves does
occur asymptotically in Γ.

Acknowledgements

This paper - which is a new formulation of my internal report Stefanescu [1990] - originated in dis-
cussions with G.Höhler more than twenty years ago. He was engaged at that time on a numerical
study of the bifurcation diagram of the Du�ng equation (Ref.Höhler [1993]). A (very) short exchange
of E-Mails with J.Gallas last year determined me to reconsider my work of that time and look at it
carefully again. I wish to thank him for this correspondence.
All calculations (numeric and symbolic) were performed with a MAPLE10 program.

A. Appendix A: A Bound on the Increase of E(θ) in the Interval

(ε3p, εq)

In this Appendix we drop the index R on θR, wR, θ0R, gR because the variables for the interval (−π/2, 0)
do not occur at all. The change of variables W = wk(θ) transforms equation (4.13) into:

d2W

dθ2
− 2

k2

dk

dθ

dW

dθ
+W (1 +G(θ)) +W 2 +

W 3

3
= 0 (A.1)

where

G(θ) ≡ g(θ) +
2

k2

(
dk

dθ

)2

− 1

k

d2k

dθ2
(A.2)

This function decreases like 1/θ2 for large θ, independently of the choice of p, eq.(4.11) in paragraph
4.5. The energy associated to (A.1):

E(θ) =
1

2

(
dW

dθ

)2

+
W 2

2
(1 +G(θ)) +

W 3

3
+
W 4

12
(A.3)

evolves in time according to:
dE
dθ

=
W 2

2

dG

dθ
− 3

4θ

(
dW

dθ

)2

(A.4)
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where we have used the approximation k(θ) ≈ ε3p/2/t1/2 for small t. The energy E is bounded because,
using W 2 < 6E (cf.eq.(4.16)), eq.(A.4) leads to the inequality:

d ln E
dθ

< const

∣∣∣∣dGdθ
∣∣∣∣ (A.5)

which means E < constE(θ0)31.This is still a very weak bound for w(θ): it simply implies that |w(θ)| <
const/k(θ) i.e. using (4.23)

|w(θ)| < const
√
E(θ)

(
θ

θ0

)3/8

< const
√
E(θ0)(θ/θ0)3/8. (A.6)

We consider now in more detail the negative "`damping "` term in (A.4): by comparing with the
motion Wf (θ) in the time independent potential:

V (W ) =
W 2

2
+
W 3

3
+
W 4

12
(A.7)

we shall show that, in fact, the energy E decreases to zero like const/θs, for some s > 0. Let T (E) be
the period of the motion with energy E in the potential V (W ), eq.(A.7) and let TM ≡ supT (E) over
all E > 0 32.Let further T be a time interval obeying T > qTM for some integer q>1. The following is
useful:

Statement A.1 There exists a constant kT , 0 < kT < 1 so that the inequality:(
dW

dθ

)2

> E (A.8)

is ful�lled by the motion Wf (θ) with energy E in the �xed potential V (W ), eq.(A.7) during a time kTT ,
independently of the energy of the motion.

Indeed, we evaluate �rst the fraction k̃(E) of a period of the motion with energy E during which (A.8)
is obeyed. Let �rst E > 1:

k̃(E) =
I(E/2)

I(E)
(A.9)

with

I(fE) ≡
∫ W (+,fE)

W (−,fE)

dW√
E − V (W )

=
1

E1/4

∫ u(+,λ)

u(−,λ)

du√
1− λ2u2/2− λu3/3− u4/12

where W (−/+, E) are the two real roots of the equation V (W ) = fE , u(−/+, λ) are the roots of
the corresponding equation after changing variables to W = uE1/4, f = 1/2, 1 and λ = 1/E1/4. The
function k̃(E(λ)) is a continuous, strictly positive function of λ on the closed interval [0, 1] and achieves
there its smallest value which is di�erent from zero (and less than 1).The reasoning may be repeated
for E < 1, with the change of variables W = uE1/2. Let the minimum of k̃(E) over the whole range
E > 0 be denoted by k̃m. The θ-time interval T contains r ≥ q complete periods of the motion with
energy E , so that the time interval in which (A.8) is obeyed is at least rk̃mT/(r + 1). Then, choosing:

kT = inf
r≥q

rk̃m
r + 1

=
q

q + 1
k̃m

statement A.1 is veri�ed.

31cf. eqn.(4.23); in this section we drop the index R
32T (E → 0 as E → ∞
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Now, consider the two equations (A.1) and:

d2Wf

dθ2
+Wf +W 2

f +
W 3
f

3
= 0 (A.10)

and motions W (θ), obeying (A.1), and Wf (θ), obeying (A.10), such that they have the same initial
conditions at some "`initial"' θ-time θi > θ0. If we subtract (A.10) from (A.1), use the notations:

ρ = Wf −W, σ =
dWf

dθ
− dW

dθ
, η = |ρ|+ |σ|, (A.11)

and integrate the �rst order di�erential equations equivalent to (A.1) and (A.10) from θi to θ, we
obtain the inequality 33:

η ≤
∫ θ

θi

ηdθ +

∫ θ

θi

η|W +Wf |dθ +

∫ θ

θi

η

3
|W 2 +WWf +W 2

f |dθ

+

∫ θ

θi

3

4θ
|dW
dθ
|dθ +

∫ θ

θi

|WG(θ)|dθ
(A.12)

Because the energy E of the "`true"' motion W (θ) is bounded, all terms containing W,Wf explicitly
are bounded by constants, so that we can represent (A.12) by:

η < M

∫ θ

θi

ηdθ +M1

∫ θ

θi

(
1

θ
+G(θ))dθ ≡M

∫ θ

θi

ηdθ +M1H(θ) (A.13)

with M,M1 suitable constants and H(θ) monotonically increasing and positive, H(θi) = 0. For
θi < θ < θi + T , H(θ) ≤ const × T/θi. Gronwall's inequality [Bellman, 1953] p.35, [Coddington &
Levinson, 1955],p.37 implies then, for θi < θ < θi + T :

η(θ) < M1H(θ) exp(MT ) < const
T

θi
(A.14)

where the constant is independent of θi. We estimate now the energy loss ∆E of the "`true"' motion
W (θ) in a ”‘θ − time”′T :

∆E =

∫ θi+T

θi

3

4θ

(
dW

dθ

)2

dθ =

∫ θi+T

θi

3

4θ

(
dWf

dθ

)2

dθ+∫ θi+T

θi

3

4/θ

((
dW

dθ

)2

−
(
dWf

dθ

)2
)
> (kTT )

3

4θi
E(θi)

− C
√
E
∫ θi+T

θi

η(θ)
3

4θ
dθ > kTT

3

4(θi + T )
E − C2

T 2

θ2
i

√
E

(A.15)

In the �rst step we used statement A.1 and inequalities like (4.16) to bound |dW/dθ|, |dWf/dθ| from
above. Eqn.(A.14) was used in the second step. The total change of energy E(θi+T )−E(θi) is obtained
by adding the increase due to the �rst term in (A.2). This latter is bounded by C1T × E(θi)/θ

3
i . One

veri�es that, if θi is su�ciently large, the total change of energy is negative. We may even require that
it be larger in absolute value than (3/4)k1ET/θi, for a number 0 < k1 < kT . This gives a lower bound
B on the energies for which this may occur (θi/(θi + T ) ≈ 1):

√
E >

√
(B) ≡ 4

3

C2T

θi

1

kT − k1 − 4C1/3θ2
i

(A.16)

33η = 0 at θi
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This bound depends on θi and decreases like 1/θ2
i .We may assume that the maximal energy Em at θi

is such that (A.16) is satis�ed and that even, say,34:

Em(θi) > 2B (A.17)

Then at θ = θi + T the energies E of all motions for which (A.16) is true at θi have decreased at least
to E(1− (3/4)k1T/θi), and so has the maximal

Em(θi + T ) = Em(θi)(1−
3

4

k1T

θi
) (A.18)

This is a bound for the energies of all motions with E(θi) < Em(θi): indeed, all those motions for which
the inequality (A.16) at θi is not obeyed cannot acquire by (A.5) in the θ-time T su�cient energy to
get over Em(θi + T ), in view of the condition (A.17) if θi is large enough. Further, the decrease of
the maximal energy Em(θ) in the interval (θi, θi + T ) is less than that of the bound B in the same
θ-interval: at θi + T the latter is, according to (A.16)

B(θi + T ) ≈ B(θi)(1− 2T/θi) (A.19)

Thus, (A.17) is obeyed also at θi + T with the maximal energy (A.18) and the bound B of (A.19);we
may then proceed to θi+ 2T , etc. and conclude that, after n steps, the maximal energy is bounded by:

Em(θi + nT ) = Em(θi)

n∏
j=1

(1− 3

4

k1T

θi + jT
) (A.20)

For large n, the product in (A.20) behaves like (nT/θi)
−3k1/4 ≈ (θ/θi)

−3k1/4. We conclude that the
maximal energy Em decreases like (θ/θi)

−r, with 0 < r < 1. As a consequence, the weak bound on
|w(θ)| contained in the �rst inequality of (A.6) may be now strengthened to:

|w(θ)| < const

(
θ

θi

)3/8−r/2
(A.21)

We return now to the energy E(θ) of the original equation (4.13) and to the inequality (4.25):

dE

dθ
<

1

3

∣∣∣∣w(θ)3dk

dθ

∣∣∣∣ < const×
(
θ

θi

)9/8−3r/2(θi
θ

)3/8 1

θ
(A.22)

Integration of (A.22) leads to:

E(θ)− E(θi) < const× 1

3/4− 3r/2

(
θ

θi

)3/4−3r/2

(A.23)

which justi�es our assertion in eq.(4.27)(with s = 3r/2).

B. The Inversion of the Averaging Transformations

A simple proof is o�ered that the averaging transformations (5.7a), (5.7b) (or (5.11a), (5.11b)) leading
from (R,φ) to (R1, φ1) (or from the latter to (R2, φ2)) are invertible, if the quantity h(θL), eqns.(4.9),
(5.3) is small enough. This is achieved either for small enough ε or large enough |θL|. In Section
6 the quantity h(θL) is replaced in the averaging transformations by k(θR), which is monotonically

34it is at our disposal to increase E(θi), if necessary
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decreasing like θ
−3/8
R and may be thus made small for large θR. We show that the transformation

(5.7a),(5.7b) is one-to-one from a strip {0 ≤ R ≤ M} in the (R,φ) plane to its domain of values in
(R1, φ1), for small h (or k). Here M is the bound on the values of R established in Section 4.7(see
Corollary 4.1).
From (5.7a),(5.7b), taking derivatives at �xed θL one veri�es that, for (small) positive constants

Cij , i, j = 1, 2, it is true that:

|∂R1

∂R
| ≥ 1− C11h(θL)M, |∂R1

∂φ
| ≤ C12h(θL)M2 (B.1a)

|∂φ1

∂R
| ≤ C21h(θL), |∂φ1

∂φ
| ≥ 1− C22h(θL)M (B.1b)

Assume now two di�erent points (Ra, φa), (Rb, φb) of the (R,φ) plane were mapped to the same
(R1, φ1). Consider then the two functions of s, 0 < s <1:

R̃1(s) ≡ R1(Ra + sD cosα, φa + sD sinα), φ̃1(t) ≡ φ1(Ra + sD cosα, φa + sD sinα) (B.2)

where D is the distance between the two points and tanα is the slope of the line joining them. Since the
two functions R̃1(s), φ̃1(s) assume the same value at s = 0 and s = 1, there exist values 0 < sR, sφ < 1
so that their derivatives with respect to s vanish there. Suppose α is such that, e.g. | cosα| ≥ 1/

√
2.

Then, using (B.1a):

|dR̃1

ds
(sR)| >D|∂R1

∂R
cosα| −D|∂R1

∂φ
sinα|

> D(
1√
2
− C11hM − C12hM

2)

(B.3)

It is clear that for h small enough, the right hand side of (B.3) does not vanish, which contradicts the
fact that R̃1(s) assumes the same value at s = 0 and 1.
If | cosα| < 1/

√
2, we use the function φ̃1(s) of (B.2) and relation (B.1b) and reach the same

conclusion.
In calculations, the inversion is achieved by expanding R(R1, φ1), φ(R1, φ1) in powers of h (cf.eqns.

(5.9a), (5.9b)).

C. The Solutions of the Variational Equation and the WKB

Approximation

The following is an adaptation to the present situation of procedures that are common in the dis-
cussion of the WKB method (see, e.g.Langer [1949] and any classical book on di�erential equations,
e.g.Coddington & Levinson [1955])

C.1. The existence of some special solutions with WKB asymptotics

Consider the WKB functions (5.40):

V (as)
c,s (τ, ε) =

31/4

Ξ(τ, ε)1/4
{cos / sin} (

∫ τa

τ
Ξ(τ, ε)1/2dτ) (C.1)

for some τa < 0. The functions wc,s(θ, τa) ≡ Ξ1/4V
(as)
c,s are the solutions cos(θ − θa), sin(θ − θa) of the

equation
d2w

dθ2
+ w = 0, θ = −

∫ τ0

τ
Ξ1/2(τ ′)dτ ′ (C.2)
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and35 θa ≡ θ(τa) . The same changes of dependent and independent variable transform the variational
equation (5.39) into

d2w̃

d(θ)2
+ w̃(1 + G̃(θ)) = 0, w̃ ≡ Ξ1/4V (C.3)

with36

G̃ =
5

16

(dΞ/dτ)2

Ξ3
− d2Ξ/dτ2

Ξ2
(C.4)

Solutions of (C.3) which assume at τ = −ε−δ the values and derivatives of wc,s are obtained using the
method of variation of paramaters as the unique solutions of the linear integral equation:(θ(ε−δ) ≈
−ε−4δ/3

w̃c,s = wc,s +

∫ θ

−ε−4δ/3

G̃(θ′) sin(θ − θ′)w̃c,s(θ′)dθ′ (C.5)

Since G̃(θ) ≈ 1/θ2, the desired solution of (C.5) may be obtained by iteration at large |θ| starting from
wc,s; since its values and derivative are bounded for |θ| su�ciently large (C.5), implies that, for such θ,

|(w̃c,s − wc,s)(θ)|,
∣∣∣∣dw̃c,sdθ

− dwc,s
dθ

∣∣∣∣ < C

|θ|
(C.6)

Reverting to the variable τ , to the original V
(as)
c,s of (C.1) and to the sought solutions Vc,s(τ, ε) of (5.39):

Vc,s(τ(θ), ε) ≡ w̃c,s(θ)

Ξ(τ(θ), ε)1/4
(C.7)

we may state that, for all |τ | su�ciently large (i.e. even larger than ε−δ):

|(Vc,s − V (as)
c,s )(τ)| < C

|τ |3/2
,

∣∣∣∣∣
(
dVc,s
dτ
− dV

(as)
c,s

dτ

)
(τ)

∣∣∣∣∣ < C

τ7/6
(C.8)

where we have used dθ/dτ ≈ τ1/3. Eq.(C.8) shows in what sense Vc,s(τ) asymptotically approach
V (as)(τ) The solutions Vc,s obtained by (C.5) for large |τ | may be extended down to τ = 0.

C.2. The limit ε→ 0

The solutions Vc,s obtained above depend on the chosen value of ε. It is, however, plausible, as shown
in paragraph 5.3 (cf.eq.(5.42)) that they approach a limit as ε → 0. Indeed, on an interval [−ε−δ, 0]
with δ = 3r/8 (cf.eq.(5.22)) the di�erence |ηL(τ) − η00L(τ)| tends to zero as ε → 0. The function G̃,
eq.(C.4) depends on ε through ηL(τ) (cf.5.41), is well de�ned for ε = 0 (replacing ηL by η00L) and
eqn.(C.5) has a formal limit for ε = 0:

w̃c,s(θ, 0) = wc,s(θ) +

∫ θ

−∞
G̃(θ′, 0) sin(θ − θ′)w̃c,s(θ′, 0)dθ′ (C.9)

The solution w̃c,s(θ, 0) of (C.9) may be obtained by iteration and is bounded for large θ; we may
estimate at a �xed value of θ its departure from the solution w̃c,s(θ, ε) of (C.5) by Gronwall's Lemma as

35The de�nition of θ in (C.2) di�ers from the one of θL in (4.2) by the implicit consideration of the term γ2 in the
de�nition of Ξ in (5.41)

36the function G̃ is equal to the �rst two terms in (4.10) if one uses the approximation (5.41) for Ξ(τ, ε)
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follows: we subtract (C.9) from (C.5), separate out the τ -interval (−∞,−ε−δ) and estimate ∆w̃c,s(θ) ≡
w̃c,s(θ, ε)− w̃c,s(θ, 0):

|∆w̃c,s(θ)| < const×
∫ ε−4δ/3

−∞
G̃(θ′, 0)dθ′+ const×

∫ θ

ε−4δ/3

|G̃(θ′, 0)− G̃(θ′, ε)|dθ′

+

∫ θ

−ε−4δ/3

G̃(θ′, ε)|∆w̃c,s(θ′)|dθ′
(C.10)

Since G̃ < C/θ2, the �rst term is bounded by const × ε4δ/3. Using (C.4) and the expansions
(3.9),(3.11),(cf.eq.(3.34)) one veri�es that:

|G̃(θ, ε)− G̃(θ, 0)| = O(
γ

τ13/3
,
ε3/4

τ2/3
)

so that eqn.(C.10) may be rewritten in short:

|∆w̃c,s(θ)| < C̃(ε) + C

∫ θ

−ε−4δ/3

1

θ′2
|∆w̃(θ′)|dθ′ (C.11)

where C̃(ε) tends to zero when ε → 0. Gronwall's Lemma[Bellman, 1953],[Coddington & Levinson,
1955],[Guckenheimer & Holmes, 1983],ch.IV shows that

|∆w̃(θ)| < C̃(ε) exp(

∫ θ

−ε−4δ/3

C

θ′2
) < C1(ε) (C.12)

where C1(ε) vanishes as ε tends to zero. This shows that, as announced, if the value of θ is kept un-
changed, wc,s(θ, ε) approach wc,s(θ, ε = 0) as ε→ 0. The same is true for the derivatives dwc,s/dθ(θ, ε).
However, this does not yet imply that this limit exists at �xed τ : indeed the relation (C.2) de�ning θ
in terms of τ depends through Ξ , eqn.(5.41), on ε, and if τ is �xed, θ(τ, ε) is di�erent from θ(τ, ε = 0).
We estimate the di�erence ∆θ(τ, ε) between the θ-values corresponding to the same τ at ε and at
ε = 0:

∆θ ≡ θ(τ, ε)− θ(τ, 0) =

∫ τ

τ0

(Ξ(τ ′, ε)− Ξ(τ ′, 0))dτ ′ = O
( γ

τ1/3
, ε3/4τ10/3

)
(C.13)

where we have used the expansions (3.9),(3.11) to evaluate the integral. This di�erence vanishes as
ε→ 0 for |τ | < ε−δ with the choice of δ in (C.13). We can now write, using θε ≡ θ(τ, ε), θ̂ ≡ θ(τ, 0)

|w̃c,s(τ, ε)− w̃c,s(τ, 0)| ≤ |w̃c,s(θε, ε)− w̃c,s(θε, 0)|+ |w̃c,s(θε, 0)− w̃c,s(θ̂, 0)| ≡ T1 + T2 (C.14)

The �rst term in (C.14) is the di�erence at �xed θ and vanishes as ε→ 0, according to (C.12). For the
second term we use the estimate (C.14) of ∆θ and the integral equation (C.9):

T2 ≤|wc,s(θε)− wc,s(θ̂)|+
∫ θε

−∞
G̃(θ′)(sin(θε − θ′)− sin(θ̂ − θ′)w̃c, s(θ′, 0)dθ′

+

∫ θε

θ̂
G̃(θ′) sin(θ̂ − θ′)w̃c, s(θ′, 0)dθ′

(C.15)

All terms in (C.15) may be majorized by const × |θε − θ̂| so that, as announced, at any �xed τ in
[ε−δ, 0] , the solutions of (C.5) approach those of (C.9) as ε→ 0.
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C.3. The di�erence of two solutions of the variational equation

We need sometimes an estimate of the di�erence of two solutions Vi(τ),(i = 1, 2) of the variational
equation on the whole interval [−ε−δ, 0], knowing the di�erence of their initial values (αi, βi), i = 1, 2
at τ = −ε−δ. Let w̃i(θ) ≡ ViΞ

1/4 be then the solutions corresponding to them of two equations like
(C.5),containing suitable initial conditions at τ = −ε−δ. These latter, which we call α̂ ≡ w(−ε−δ),
β̂ ≡ dw/dθ(−ε−δ) are obtained from (αi, βi) through:

α̂i = 31/4αiε
−δ/6, β̂i = 3−1/4εδ/6βi +

3−5/4

2
ε7δ/6αi (C.16)

Subtracting the two equations (C.5) corresponding to w̃i, i = 1, 2 one obtains with an obvious notation:

∆w̃(θ) = ∆α̂wc(θ) + ∆β̂ws(θ) +

∫ θ

−ε−4δ/3

G̃(θ′) sin(θ − θ′)∆w̃(θ′)dθ′ (C.17)

In a well known manner, from (C.17) and the boundedness of wc, ws, Gronwall's Lemma [Bellman,
1953],[Coddington & Levinson, 1955] implies that:

|∆w̃(θ)|,
∣∣∣∣∆dw̃

dθ
(θ)

∣∣∣∣ = O(max(∆α̂,∆β̂)) (C.18)

The estimate (C.18) holds as long as Ξ 6= 0, in our case down to τ = 0. Reverting to the original Vi(τ)
and noticing that for �nite τ , Ξ(τ) is �nite, together with its derivative, we conclude that the same
estimate (C.18) is true also for the di�erences of Vi, dVi/dτ . Using (C.16):

|∆V (τ)|,
∣∣∣∣∆dV

dτ
(τ)

∣∣∣∣ = O(max(∆αε−δ/6,∆βεδ/6)) (C.19)

D. The Limit of RL,f(ε) for ε→ 0

We show that the values RL,f (ε) ≡ R(ε, t(θ) = π/2) obtained through the solution of (6.9a) tend to a
limit RL,f (0) as ε→ 0. The latter is the asymptotic value of the solution obtained by setting formally
ε = 0 in (6.9a),(6.9b), i.e. with the replacements in k(θ) indicated in Lemma 6.1:

dRL,0
dθ

=
7

216

RL,0(θ)

τ(θ)8/3
sin(2z0) +

R2
L,0(θ)

4τ(θ)1/2
(sin z0 + sin 3z0)

+
RL,0(θ)3

12τ(θ)
(sin 2z0 +

sin 4z0

2
)

(D.1a)

dφL,0
dθ

=
7

216τ(θ)8/3
(1 + cos 2z) +

RL,0(θ)

4τ(θ)1/2
(3 cos z0 + cos 3z0)

+
1

12

RL,0(θ)2

τ(θ)
(
3

2
+ 2 cos 2z0 +

1

2
cos 4z0)

(D.1b)

where we have used the limiting forms (see eqns. (4.10), (6.7)) g(θ) ≈ (7/108)τ(θ)−8/3, k(θ) ≈
1/τ(θ)1/2 and z0 = θ + φL,0(θ). In (D.1a), (D.1b), one uses τ(θ) as determined from :

θ(τ) =
3
√

3

4
(τ4/3 − τ4/3

0 ) ≈ 3
√

3

4
τ4/3 (D.2)

where the last approximation is true for large τ . In this domain,

τ(θ) ≈
(

4θ

3
√

3

)3/4

(D.3)

66



We perform now on equations (D.1a),(D.1b) the same "`averaging"' transformations as in Sect.5 and
"`eliminate"' successively terms in 1/θ3/8 and 1/θ3/4. At this latter stage, there appear in the equation
for φL,0 secular terms, which may diverge as θ →∞. It is convenient for the following to continue this
procedure and eliminate further terms in 1/θ9/8 at which stage it becomes apparent that further secular
terms for φL,0 occur to O(1/θ3/2), but no such terms occur for RL,0. A further transformation to remove
terms in dk/dθ ≈ 1/θ11/8 leads also in the equation for RL,0 to secular terms of O(kdk/dθ) = O(1/θ7/4).
None of these terms is divergent as θ →∞. They contribute �nite quantities to the phase φL,0. If we
denote by R4L,0(θ), φ4L,0(θ) the dependent variables obtained after these four transformations, we �nd
that these obey equations like:

dR4L,0

dθ
= O(θ−3/2) (D.4a)

dφ4L,0

dθ
= − 7

24

(
3
√

3

4

)3/4
RL,0(θ)2

θ3/4
+O(θ−3/2) (D.4b)

In writing these equations, we have used the fact that, according to Sect.4, RL,0 is bounded for all
θ and that all other terms, coming from g(θ) and the derivatives of k(θ) fall o� even quicker with θ.
Integrating (D.4a) between two values θ1 and θ2 we conclude that:

|R4L,0(θ2)−R4L,0(θ1)| ≤ const(θ−1/2
1 − θ−1/2

2 ) (D.5)

Since for a sequence of points θn → ∞ the di�erences between any two terms R4L,0(θn), R4L,0(θm)
tends to zero when n,m→∞ it follows that the sequence R4L,0(θn) approaches a limit, which we call
RL,f (0). We return now step by step to the original variable RL,0(θ) by inverting the transformations
leading to R4L,0; these transformations are such that the di�erences between RiL,0 and RjL,0 decrease
to zero as θ →∞ so that we conclude that RL,0(θ) approaches the same limit RL,f (0).
Further, for a �nite value of ε, for which θ(t = π/2) = const/

√
ε, we perform the same transforma-

tions to obtain equations similar to (D.4a) and (D.4b), with the di�erence that on the right hand side
we have powers of k(θ), and its product with derivatives or with g(θ):

dR4L,ε

dθ
= O(k4 + g) (D.6a)

dφ4L,ε

dθ
= − 7

24
{RL,ε(θ)2k(θ)2 +O(k4 + g) (D.6b)

It is necessary to keep the terms with g(θ) because k(θ) falls o� exponentially for time scales of O(1)
and thus may become smaller than g(θ), which settles to a value of O(ε(ln(1/ε))2 after falling o� like
O(θ−2) when t = o(1). Integrating (D.6a) between a su�ciently large value of θ and θf ≡ θ(t = π/2)
we obtain:

|R4L,ε(θf )−R4L,ε(θ)| ≤ const
∫ θf

θ
(k(θ)4 + g(θ))dθ (D.7)

If we choose |τ | > ε−δ for 0 < δ < 3/8, the integrals in eqn.(D.7) are less than const× ε2δ/3; if δ = 3/8
(i.e.t = O(1)), they are even less than const

√
ε(ln(1/ε))2 (the terms with g(θ) are dominant).

Thus, we must now show that the di�erence of the solutions of the limiting equations (D.4a) and
(D.4b) to those of the exact equations (D.6a) and (D.6b) at such values of θ vanishes as ε→ 0. To this
end, we write out (D.4a), (D.4b), (D.6a), (D.6b) in more detail (the precise values of the coe�cients
may be obtained from an algebraic manipulation program, but they are of no importance for the
present purpose). For instance, (D.6a) reads :

dR4L,ε

dθ
= k(θ)4RL,ε(θ)

5P1(z) + ... (D.8)
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where P1(z) is a trigonometric polynomial of z = θ + φL,ε(θ). The further terms contain higher
powers of k(θ) and products of k(θ) or its derivatives with g(θ). Equation (D.4a) is similar: the same
polynomials in z occur, but (as in (D.1a),(D.1b)),XR(t) is replaced by the leading term of the inner
expansion (3.23), i.e. for large θ, k(θ) ≈ const/θ3/8. From eqns.(3.9),(3.25) we see that, for large τ ,
the di�erence:

ηR(τ)− τ1/3 = O
(
ε3/4τ7/3,

γ

τ4/3

)
(D.9)

Equation (D.9) allows us to estimate the di�erences between the various coe�cients of eqn.(D.8) and
its analogon (D.4a). We notice that the di�erences have to be estimated at a �xed value of θ, which
corresponds to di�erent values of τ denoted by τ(0, θ), τ(ε, θ) in turn, in the situations ε = 0 and �nite
ε (cf.also Appendix C, eq.(C.13)). The value of τ corresponding to θ at ε = 0 is given by (D.3) but
for �nite ε it is the solution of

θ ∼=
√

3

∫ τ

τ0

ηR(τ ′)dτ ′ ∼=
3
√

3

4
τ4/3(1 +O(ε3/4τ2)) (D.10)

where we have used the estimate (D.9) for ηR(τ). For small ε and τ < ε−δ , δ < 3/8,one obtains:

τ(ε, θ) = τ(0, θ)(1 +O(ε3/4τ(0, θ)2)) (D.11)

Using this in (D.9) one gets an estimate:

ηR(τ(ε, θ)) = τ(0, θ)1/3(1 +O(ε3/4τ(0, θ)2)) (D.12)

which shows that in evaluating orders of magnitudes of di�erences at �xed θ one may replace τ(ε, θ)
by τ(0, θ) of (D.3). Let now:

∆R4(θ) ≡ R4L,ε(θ)−R4L,0(θ) ∆R(θ) ≡ RL,ε(θ)−RL,0(θ) (D.13a)

φ̄4L,ε(θ) ≡ φ4L,ε(θ) +
7

24

∫ θ

0
k(θ)2RL(θ)2dθ (D.13b)

∆φ4(θ) ≡ φ4L,ε(θ)− φ4L,0(θ) ∆φ(θ) ≡ φL,ε(θ)− φL,0(θ) (D.13c)

and φ̄L,ε be related to φL,ε by (6.12). Subtracting from each other equations like (D.8) and their
counterparts for ε = 0 and using the uniform boundedness with respect to ε of RL(θ) one obtains

d∆R4L

dθ
≤ const∆(k(θ)4) + a1(θ)∆RL + b1(θ)∆φ (D.14a)

d∆φ̄4L

dθ
≤ const∆(k(θ)4) + a2(θ)∆RL + b2(θ)∆φ (D.14b)

∆φ4 ≤ ∆φ̄4 +
7

24
∆

∫ θ

0
k(θ)2RL(θ)2dθ (D.14c)

In equations (D.14a), (D.14b), the functions ai(θ), bi(θ) are sums over the various θ− dependent
coe�cients in (D.6a),(D.6b) multiplied by constants obtained from the simple estimates |Pi(z)| < const.
As long as t is con�ned to an interval (ε3/8 < t < Cε), Cε → 0 as ε → 0, the dominant term is of
O(k4) = O(θ−3/2), so that we may assume this is the order of magnitude of the ai(θ), bi(θ) in (D.14a),
(D.14b). From a repeated application of the "`inverse"' eqns. (5.9a),(5.9b) we may express ∆RL, ∆φL
in terms of ∆R4L,∆φ4L through:

∆RL = ∆R4L(1 +O(k(θ))) + ∆φ4LO(k(θ)) +O(∆k(θ)) (D.15a)

∆φL = ∆R4LO(k(θ)) + ∆φ4L(1 +O(k(θ))) +O(∆k(θ)) (D.15b)
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Upon substitution in (D.14a),(D.14b), one veri�es that the estimates remain unchanged if we replace
∆RL, ∆φL by ∆R4L, ∆φ4L and also the order of magnitude of the coe�cients is preserved (we keep the
notation unchanged). To replace further ∆φ4L by ∆φ̄4L we need a bound on the integral in (D.14c).
If M is a bound on RL, RL0 we obtain, using (D.15a),(D.15b):∫ θ

0
∆(k2RL)2dθ′ ≤M2

∫ θ

0
(∆k)2d(θ′) + 2M

∫ θ

0
k2∆RL(θ′)dθ′

≤M2

∫ θ

0
(∆k)2d(θ′) + C1

∫ θ

0
k2∆R4Ldθ′+ C2

∫ θ

0
k3∆φ̄4Ldθ′+

C3

∫ θ

0
k(θ′)3dθ′

∫ θ′

0
∆(k2R2

L)dθ′′

(D.16)

with C1, C2, C3 constants pertaining to the O() terms in (D.15a),(D.15b). If we invert the order of
integration in the last term and realize that, for a su�ciently high τ0 it is true that, for all 0 < θ′ < θ:

1− C3

∫ θ

θ′
k(θ′′)3dθ′′ ≥ 1− C3

∫ θ

0
k3dθ′′ ≥ 1− C3

τ
1/6
0

> const > 0 (D.17)

we may conclude that:∫ θ

0
∆(k2R2

L)dθ′ ≤ const
(∫ θ

0
(∆k)2dθ′+

∫ θ

0
k2∆R4Ldθ′+

∫ θ

0
k3∆φ̄4Ldθ′

)
(D.18)

This allows us to obtain inequalities like (D.14a), (D.14b) only in terms of R4L, φ̄4L. We integrate
now the resulting inequality in (D.14a) from θ = 0 to θ and interchange the order of integration. One
obtains:

|∆R4L(θ)| ≤ |∆R4L(0)|+ T (θ) +

∫ θ

0
c1(θ, θ′)∆R4L(θ′)dθ′+

∫ θ

0
c2(θ, θ′)∆φ̄4L(θ′)dθ′ (D.19)

where the dominant terms are now originating in (D.16): e.g.using the notation in (D.14a)

T (θ) =

∫ θ

0
∆(k2)(θ′)dθ′

∫ θ

θ′
b1(θ′′)dθ′′ = O(ε3/4θ5/4) (D.20)

and

|c1(θ, θ′)| < k(θ′)2

∫ θ

θ′
a1(θ′′)dθ′′ = O(θ′−5/4) (D.21)

In (D.20) we have used the estimate (D.12) of ηR(τ):

∆k(θ)2 = k(θ)2 − 1

(τ(θ)1/2)2
= const

1

τ(θ)

(
1

(1 + ε3/4τ2)3
− 1

)
= O(ε3/4τ) (D.22)

Estimates similar to (D.21) hold for c2(θ, θ′) and for the coe�cients appearing in the inequality for
∆φ̄4 analogous to (D.19). De�ning:

∆σ(θ) ≡ |∆R4L(θ)|+M |∆φ̄4L(θ)| (D.23)

and adding (D.19) and its analogon for ∆φ̄4L one obtains:

∆σ(θ) ≤ T1(θ) +

∫ θ

0
d(θ′)∆σ(θ′)dθ′ (D.24)
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where T1(θ) obeys an estimate like (D.20) and d(θ) an estimate like (D.21). Gronwall's inequality
implies then:

∆σ(θ) = O(ε3/4θ5/4) (D.25)

and thus vanishes as ε → 0 on intervals of θ of order ε−4δ/3 with δ < 3/8. With this, the di�erence
between the value R4L,ε(t = π/2) ≡ R4L,f (ε) and the asymptotic value R4L,f (0) obtained from the
equation with ε = 0 is:

|R4L,f (ε)−R4L,f (0)| ≤ |R4L,f (ε)−R4L,ε(θ)|+ |R4L,ε(θ)−R4L,0(θ)|+ |R4L,0(θ)−R4,f (0)| (D.26)

For θ = O(ε−4δ/3) ,δ < 3/8, the �rst term is O(ε2δ/3) (cf.the comments on (D.7)), the second term
is O(ε3/4−5δ/3) (cf. eqn. (D.25)) and the third term is also of O(θ−1/2) = O(ε2δ/3) . For any choice
of δ < 3/8, the di�erence (D.26) vanishes as ε → 0. Inverting the transformations leading from
RL(θ) to R4L(θ), this result holds also for the original variables RL, RL,0, because k(θ) approaches
k(ε = 0, θ) ≡ 1/τ(θ)1/2 as ε → 0 on the whole τ -interval [1, π/2/ε3/8]. We obtain thus the statement
of Lemma 6.1. From this argument it follows that the asymptotic value of RL(θ) is approached closely
even in the "transition domain" between the boundary layer region and that where t = O(1). This
limiting value for RL may be obtained once for all by solving the boundary layer equation for XL(t) for
t>0 using for XR(t) the simple approximation XR(t) ≈ ε1/8η00(τ) and looking at the asymptotic value
of RL(θ). It turns out to be ≈ 0.844 Clearly, the same argument as above serves to show that the phase
di�erence ∆φ̄4L(θ) tends to zero as ε → 0 and thus justify the contents of Lemma 6.3.The limiting
value φ̄L,f (0) depends on the choice of τ0 (the origin of the variable θR; for τ0 = 15,φ̄L,f (0) ≈ 0.14)

E. The Evaluation of some Integrals

In this Appendix we drop for simplicity the index L used in Section 6:R(θ) ≡ RL,ε(θ), etc. To evaluate
(6.50) we add and subtractR(θ(π/2))(∂R/∂R0)(θ) and we are thus led to the evaluation of the integrals:

I1 ≡
∫ θ(π/2)

0
k(θ)2 ∂R

∂R0
(θ)(R(θ)−R(θ(π/2))dθ (E.1)

I2 ≡
∫ θ(π/2)

0
k(θ)2R(θ)

[(
∂R

∂R0

)
(θ)−

(
∂R

∂R0

)
(θ(π/2))

]
dθ (E.2)

For I1 we use the boundedness of ∂R/∂R0 and the relation:

R(θ) = R4(θ) +O(k(θ)) (E.3)

obtained by iteration of (5.9a),(5.9b) to obtain:

I1 < const

∫ θ(π/2)

0
k(θ)2(|R4(θ)−R4(θ(π/2))|+O(k(θ))dθ

< const(

∫ θ(π/2)

0
k(θ)3dθ) +O

(∫ θ(π/2)

0
k(θ′)2dθ′

∫ θ(π/2)

θ′
k(θ′′)4dθ′′)

) (E.4)

where we have used (D.7) to evaluate the di�erence |R4(θ) − R4(θ(π/2))| and the fact that δR(θ) is
bounded (see text following eqn.(6.31)). Now, both integrals in (E.4) are bounded so that we deduce:

I1 <∞ (E.5)

Using Lemma 6.4 we may also conclude that I1 has a limit as ε→ 0.
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For I2 we write, using (6.24a):
I2 = I21 + I22 (E.6)

I21 =

∫ θ(π/2)

0
k(θ)2R(θ)

[(
∂R4

∂R0

)
(θ)(1 +O(k))−

(
∂R4

∂R0

)
(θ(π/2))(1 +O(k(π/2)))

]
dθ (E.7)

I22 ≡
∫ θ(π/2)

0
k(θ)2R(θ)

[(
∂φ4

∂R0
(θ)

)
O(k(θ))−

(
∂φ4

∂R0
(θ(π/2))

)
O(k(θ(π/2))

]
dθ

≡ I221 + I222

(E.8)

In (E.7) we replace the di�erence of the values of ∂R4/∂R0 at θ and θ(π/2) by the integral over the
right hand side of (6.23a). Since both R(θ) and ∂R/∂R0(θ) are bounded, the integral over the �rst
term in (6.23a) converges. The second term is more di�cult, since ∂φ/∂R0 diverges like θ1/4, so that
the integral from θ to∞ falls o� like 1/θ1/4; this brings a contribution behaving like ln(1/γ) in I21. To
improve on this, we use below the fact that the polynomial P̄2(z) has zero mean. We expect namely
that the oscillations of P̄2(z) reduce the magnitude of the integrals. Before proceeding, we move to I22,
where a similar problem occurs. The second term of the integral in (E.8) is negligible, since k(θ(π/2))
is exponentially small. In the �rst term, the factor ∂φ4/∂R0 increases like θ1/4 (see eqn.(6.37)) so
that the power of 1/θ under the integral is at a �rst sight 7/8, which is not enough for convergence.
However, as remarked in relation to eqns.(6.24a),(6.24b), the true appearance of this term is (we leave
out the last term):

I221 =

∫ θ(π/2)

0
k(θ)3R(θ)2 ∂φ4

∂R0
(θ)T (z4)dθ (E.9a)

z4 = θ + φ4(θ) (E.9b)

where T (z4) is a trigonometric polynomial with zero mean (in this case, T (z4) = sin z4 +(1/3) sin(3z4),
cf.eq.(5.9a),(5.9b). The property of zero mean ensures that there exists another trigonometric polyno-
mial (which may be also chosen to have zero mean)S(z4) so that:

dS

dz4
= T (z4) (E.10)

We transform then I221 by partial integration:

I221 = k(θ)3R(θ)2 ∂φ4

∂R0

1

1 + dφ4/dθ
S(z4)|θ(π/2)

0

−
∫ θ(π/2)

0

d

dθ

[
k3(θ)R2(θ)

∂φ4

∂R0

1

1 + dφ4/dθ

]
S(z4)dθ

(E.11)

Now,the derivatives with respect to θ in eq.(E.11) have as e�ect the increase of the rate of fallo� of
the integrand with respect to θ: indeed,

dR

dθ
= O(k),

d

dθ

∂φ4

∂R0
= O(k2)

as follows from eqn.(6.9a) and (6.23b), and

d2φ4

dθ2
= O(k2)

as follows from eq.(D.6b). Further, the denominator 1 + dφ4/dθ is nonvanishing if only we take the
starting point τ0 su�ciently large. As a consequence, the integrals containing each of these derivatives
are absolutely convergent. The �rst term is clearly bounded, so that we conclude that I22 is itself
bounded. The same argument may be applied to the second term in I21: a partial integration increases
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the fallo� rate of the integral from θ to ∞ and ensures thus the boundedness of I21. Moreover, after
performing the partial integration, it is possible to take the limit ε→ 0. Indeed all integrals can be seen
to make sense and be �nite even if we set in them formally ε = 0 and replace all quantities with those
with superscript 0 ( corresponding to ε = 0,see Section 6.2). Moreover, the values of the integrals tend
to those for ε = 0 as ε→ 0. To see this, one notices that: (i)since all integrals extended from 0 to ∞
are absolutely convergent, the contribution of the interval (ε−s, θ(π/2)), s > 0 may be made arbitrarily
small, for ε small enough.(ii)The departure of the various quantities of interest (R(θ), ∂R/∂R0(θ), etc.)
from their values for ε = 0 (indexed with a superscript "`0"' in Section 6.2) is estimated by expressions
like εaθb with a > 0, b ≥ 0(see eqns.(6.44),(D.25)).Their integrals over intervals (0, ε−s) are quantities
of O(εaε−(b+1)s). This is a positive power of ε if s < a/(b + 1). This shows that, indeed, all integrals
are continuous at ε = 0

F. On the Invariant Sets of the Circle Map Π

In this Appendix a proof is given for Lemma 7.2.

F.1. General Comments

(i)We restrict ourselves to 0 < β < π; it follows we can assume −π < χ < π. It is of some advantage
to assume −π/2 < Σ < 3π/2 and to write:

Σ = π/2 + Σ̂, Π(χ) = −β sin(χ+ Σ̃) (F.1)

With this, eqns. (7.25),(7.26),(7.27) for β2u,β2d are changed to the uni�ed form :

β2u sin(β2u + Σ̂) = π/2 + Σ̂(mod(2π)), β2u 6= π/2− Σ̂ ≡ β1u(mod(2π)) (F.2)

β2d sin(β2d − Σ̂) = π/2− Σ̂(mod(2π)), β2d 6= π/2− Σ̂ ≡ β1d(mod(2π)) (F.3)

The solutions β2u, β2d correspond to ("`superstable"') period two orbits passing through the maxima
(at χM = −π/2 − Σ̂) and minima(at χm = π/2 − Σ̂) of Π(χ), eq.(F.1)37. The speci�cation (mod2π)
means for β2u, β2d that the quantity must be transferred to the interval (−π, π) through suitable
addition or subtraction of 2π. The values of β1u, β1d are also solutions of the equations satis�ed by
β2u, β2d and immediately precede the latter. They play a role only if they are positive and less than π
(after 2π translation). Eqns.(F.2),(F.3) show the symmetry:

β2u(−Σ̂) = β2d(Σ̂) (F.4)

In Fig.14 we show the appearance of the solutions β2u,2d(Σ) in the Σ − (−β) plane of Fig.11. The

right hand branch (with respect to Σ̂ = 0)corresponds to β2d(Σ), the left hand one (small squares)to
β2u(Σ).
(ii)For any α ∈ (−β, β), the equation Π(β, Σ̂;χ) = α has two solutions with −π < χ < π. If

α = χ+(χ−) is a �xed point of Π, we denote its pair by χ̃+(χ̃−) (If the �xed point is positive, it is
denoted by χ+ > 0, otherwise by χ− < 0).
(iii)According to (7.13), S(Π) < 0. This has the consequences (see Collet & Eckmann [1983,

p.97]):(a)S(Πp) < 0 38 for all p>0; (b)|d(Πp)/dχ| cannot have a strictly positive minimum; (c)if
dΠp/dχ does not change sign for χ ∈ [a, b] and Πp has three �xed points there, the middle one is
unstable and the other two are stable; (d)Πp cannot have more than three �xed points in an interval
[a, b] where dΠp/dχ > 0(< 0).

37At β = β1u(β1d) the �xed point lies at the maximum (minimum) of Π(χ)
38Π ◦Π ◦ ... ◦Π (p times)≡ Πp
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Figure 14: The β-values for superstable orbits

F.2. The situation Σ̂ = −π

At Σ̂ = −π (Σ = −π/2), Π may be decomposed into two maps Π+, Π− of [−β, 0], [0, β] into them-
selves.From (F.2), (F.3) one veri�es that β1u = β1d = π/2, π/2 < β2u, β2d < π.
If β < 1, only χ = 0 is a �xed point and Π is a contraction (Lemma 7.1). If β > 1, there are three

�xed points, χ−, χ0 = 0, χ+; χ0 is unstable. If β ≤ π/2, Π+ contracts the interval [0, χ+] into itself
and to χ+. Indeed, on [0, χ+],(i)Π+(χ) is monotonically increasing,(ii)Π+(χ) − χ > 0 and vanishes
only at the ends,(iii)Π+(χ) < χ+ since 0 = Π+(χ+) − χ+ > Π+(χ) − χ+. It follows that, for any
χ ∈ [0, χ+] the monotonically increasing sequence {χ,Π(χ),Π2(χ)...} has a limit which can only be
χ+. Further, the interval [χ+, β] is mapped into itself and (after iterations) to χ+. Indeed, for any χ in
this interval, χ+ < Π+(χ) < χ so that the sequence {Πp(χ)} converges to χ+. If β = π/2, χ+ = π/2.
Consider next the interval π/2 < β < βF (Σ̂ = −π) (see Fig.14).Now χ+ > π/2 and χ̃+ < π/2. The

iterates of any point in [0, χ̃+] reach at some stage the interval [χ̃+, χ+]. Indeed, the function Π+(χ)
is monotonically increasing on [0, χ̃+] so that the sequence {χ,Π+(χ)..Πp

+(χ)} increases monotonically
until Πp

+(χ) gets larger than χ̃+. Then the following transformations under Π+ are obvious:

[χ̃+, χ+]⇒ [χ+, β]⇒ [Π+(β), χ+]. (F.5)

Now, for β < β2u(Σ̂ = −Π),
Π+(β) ≡ β sinβ > π/2 (F.6)

(cf.(F.2)) so that the last interval is contained in [π/2, χ+].Thus Π2
+ maps [π/2, χ+] into itself. The

same is true for [χ+, β] which is mapped by Π+ into [π/2, χ+] and by Π2
+ into itself (cf.(F.5)). It is

also true that, for χ ∈ [π/2, β]:

(Π2
+)′(χ) = Π+′(Π+(χ))Π+′(χ) > 0; (F.7)

because β < π. This inequality is true for all β ∈ [π/2, β2u]. It follows from the property S(Π) < 0,
(7.13) that Π2

+ has at most three �xed points in [π/2, β].
We show now that, if β < βF (< β2u) the only invariant set of Π2

+ in [π/2, β] is {χ+}. Indeed, χ+

is the only root of Π2
+(χ) = χ in [π/2, β] in this interval of values of β. For χ = π/2, Π2

+(χ) > χ and
for χ = β, Π2

−(χ) < χ. Thus, for all χ ∈ [π/2, χ+] , Π2
+(χ) > χ and for all χ ∈ [χ+, β], Π2

+(χ) < χ.
It follows that for χ ∈ [π/2, χ+] the sequence

{
χ,Π2

+(χ)....
}
is monotonically increasing and can only

converge to χ+. Similarly
{
χ,Π2

+(χ)...
}
is monotonically decreasing for χ ∈ [χ+, β] and converges to

χ+. Thus the only invariant set is indeed {χ+}.
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We now turn to the situation βF < β < β2u. There are now three points (χL, χ+, χR) in [π/2, β]
where Π2

+(χ) − χ changes sign. Consequently, the sequences
{
χ,Π2

+(χ)....
}
converge (monotonically

increasing or decreasing) to χL or χR according to whether they start in [π/2, χ+] or in [χ+, β]. Now,
the image χL′ of χL under Π+ must be a �xed point of Π2

+ because Π3
+(χL) = Π2

+(χL′) = Π+(χL) = χL′
so that χL′ ≡ χR. Thus χ+ and an orbit of period two exhaust the invariant sets of Π+ for β < β2u.
The discussion of Π− is totally symmetric to the above with β2u replaced by β2d.
To conclude, if Σ̂ = −π, β2u = β2d and in the interval 0 < β < β2u the mapping Π has no other

invariant sets apart from at most three �xed points and two orbits of period two.

F.3. The general situation

The arguments concerning the contraction of intervals to the �xed points of Π and Π2 may all be taken
over from the situation Σ̂ = −π of the previous section. We describe only the main features.
(i)Assume Σ̂ = −π + δ, δ < π/2. As δ → π/2,β1u(Σ̂) → 0, β1d(Σ̂) → π, β2u(Σ̂) → π/2, β2u(Σ̂) <

β2d(Σ̂) and βS increases. (a)if β < βS(Σ̂) (cf.eq.(7.14)), there exists a single �xed point χ+ > 0;
if further β < β1u(Σ̂) ≡ π/2 − δ, then χ̃+ < χ+ and all points in [−β, β] are attracted to χ+. If
βS(Σ̂) > β > β1u, but β < β2u, then χ̃+ < χ+ and under Π:

[−β, β]⇒ [χ̃+, χ+]⇒ [χ+, β]⇒ [Π(β), χ+] ⊂ [π/2− δ, χ+]

since β2u ≡ Π(β) > β1u = π/2 − δ. As before, this implies (Π2)′ > 0 on (π/2 − δ, β). For βF < β <
β2u < βS there appear two further �xed points of Π2, to which the intervals on the left and right of
χ+ are contracted under Π2. (b)If β > βS(Σ̂) there are two further �xed points χ− < χ0 < 0, χ− is
stable, χ0 unstable. The interval [χ0, χ̃+] is mapped eventually into [χ̃+, χ+] and the further evolution
is the same as above. If β < β1d = π/2 + δ, χ̃− < χ− and the interval (χ−, χ0) is contracted under Π
to χ−. If β2d > β > β1d, χ̃− > χ− and (possibly after iteration)

[χ̃−, χ0]⇒ [χ−, χ̃−]⇒ [−β, χ−]⇒ [χ,Π(−β)] ⊂ [χ−,−π/2− δ].

The last inclusion follows from β2d > −Π(−β) > β1d. A consequence of this inclusion is that (Π2)′(χ) >
0 for χ ∈ [χ−,−π/2 − δ], similarly to (F.7). If β < βF , one concludes that the only invariant set in
[−β, χ0] is {χ−}. If β > βF a stable orbit of period two appears, but no other invariant sets. Thus, for
Σ̂ ∈ [−π,−π/2] ,the invariant set of Π consists of at most three �xed points and two orbits of period
two. The invariant set depends on the value of Σ̂ (as δ approaches π/2, the "`lower" orbit of period
two disappears).
(ii)If Σ̂ ∈ [−π/2, 0], one veri�es that β2u(Σ̂) < π/2 and β2u(−π/2) = β2u(0) = π/2 (cf. Fig. 14)

; also β2u ≤ β2d with equality at Σ̂ = 0. Further, βS(Σ̂) > π/2 so that there is no �xed point in
χ < 0. For all β < β2u, there is only one �xed point at χ+ > 0. Let χ̂ ≡ max[−β, χ̃+], (χ̃+ < 0).
The image under Π of [χ̂, χ+] is [χ+, β]. The latter is mapped back onto (Π(β), χ+) ⊂ [−π/2− Σ̂, χ+].
Since β < π/2 − Σ̂ (the latter is the position of the minimum), it follows as before that (Π2)′ > 0 on
[−π/2− Σ̂, β]. This interval may thus contain one or three �xed points of Π2. Repeating the argument
of the previous situation, we conclude that the invariant sets of Π consist of at most one �xed point
and one orbit of period two.
(iii)If Σ̂ ∈ [0, π/2], the situation is totally symmetrical to the previous one, with β2d now interchanged

with β2u (cf.Fig.14) and the unique �xed point of Π being now situated at χ− < 0. The invariant set
of Π consists of at most one �xed point and one 2-orbit.
(iv)If Σ̂ ∈ [π/2, π], the situation is symmetrical (in the sense above) to that in (i), with the same

conclusion. This ends the justi�cation of Lemma 7.2
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