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Abstract
The paper presents a complete description of the periodic solutions of the Duffing equation:
i+ 2A3 +y® =T cost

for large values of the forcing ' and of the damping A. It contains a proof that the equation admits of
an infinite sequence of bifurcation curves in the I' — A plane, alternately of the saddle-node and odd
periodic - simply 2m-periodic type, whose maxima lie at large I" along the line:
1 1
A (D) = Tom InT — S—Wlnlnf +C(T)

where C(I') has a finite limit as I' — oco. The positions of the maxima are interlaced in asymptotically
equal intervals of T''/3 with a spacing of 1.403 units. For A > A.(I), the Duffing equation admits of
a unique periodic solution if T" is high enough.

These results are obtained by showing that the half-period Poincaré map offered by the Duffing
equation is asymptotically equivalent to a map of a circle into itself, according to:

X = Bcos(x + %)

where x is an angular variable and g, ¥ depend on I'; A. The numerical constants appearing in the
circle map and its corrections are determined in the limit I' — oo by a parameter-free boundary layer
equation and its variation.

1. Introduction

This paper is concerned with the Duffing equation with external forcing and damping in its simplest
form:
i+ 2Ay +y3 =T cost (1.1)

This equation exhibits a large variety of periodic solutions, possibly with periods different from that of
the driving force and whose number changes with the values of the parameters A, I'. These solutions
may be studied at low forcing by approximate analytic methods (as in the classical books of Hayashi
[1964], Stoker [1950], Hagedorn [1978], Landau & Lifshitz [1960]) or numerically in larger domains of
the parameters I';A. There exist well-known diagrams, due to Y.Ueda[1980], in the I' — A plane of
the boundaries of regions where (1.1) admits of a certain type of periodic solutions, e.g. with a given



period 2mm/n. As the damping is decreased, these plots become increasingly intricate [Ueda, 1980].
For A > 0.1 a diagram similar to Fig.1 of Ueda [1980] extending to I" & 200 may be found in Héhler
[1993] (A similar diagram, somewhat less detailed, exists in Sato et al. [1983] ). If, at every fixed T,
A is increased,one reaches always a region where (1.1) admits of a unique 27-periodic solution. If a
2m-periodic solution yp(¢) of (1.1) is unique, then it is necessarily odd-periodic (i.e. its Fourier series
contains only odd harmonics):indeed, ypi(t) = —yp(t 4+ 7) is also a solution of (1.1)and, since it is by
assumption identical to yp(t), it follows that, for all ¢:

yp(t) = —yp(t + ) (1.2)

From the I' — A diagrams of Ueda [1980](also of Hohler [1993]) one sees that, moving along a line
of constant A (at an intermediate value, say 0.2 < A < 0.5) starting at I' = 0, there is first a small
[-interval where (1.1) admits of a unique (odd-)periodic solution yp(¢); this solution is also stable: it
is an attractor in a Poincaré plot of period 7. At a certain value of I' = FéN a saddle-node bifurcation
occurs and two new solutions, both odd-periodic, appear, one of which is stable, the other unstable.
The "‘earlier"” stable solution yp(¢) may be continued smoothly past T éN but "‘annihilates"’ at a
higher I' = F?N with the unstable solution originating at FéN in a reverse saddle-node bifurcation.
The remaining stable odd periodic solution, now unique, may be continued in I" up to a point F% where
it undergoes a pitchfork bifurcation of a special type: it becomes unstable when continued past FIL; and
two simply 27-periodic (not odd-periodic) stable solutions appear for T' > Ff;; these latter disappear
again at a higher Fﬁ, if the damping A is high enough!; at smaller values of A one traverses first an
interval where the two stable solutions above lose their stability and two further 47-periodic solutions
appear with a shorter life (in T'); if A is small enough one traverses a whole sequence of bifurcations
leading to an attracting chaotic motion, presented in Ueda [1980, 1979] in well-known pictures. At
values of I' larger than F}I,i one meets again an interval of uniqueness, up to the next saddle-node
bifurcation: for A sufficiently large,the saddle-nodes and flip bifurcations interlace.

A detailed study of eq.(1.1) at values of the forcing between ca.850 and 1500 and a damping A = 0.25
is the object of a paper by J.G.Byatt-Smith[1986]; see also Byatt-Smith [1987]2. The description of
bifurcations given above is complicated by the appearance of 6m-periodic solutions, which also generate
islands of chaotic motion as one moves up in I'. There are also windows in I', where no chaotic motion
exists but, e.g. 127 -periodic solutions. A study of (1.1) by analogue methods up to I' ~ 2000 is
presented by F.N.H. Robinson|1989], who points out the periodicity in T'*/3 of the way periodic solutions
multiply (and disappear). A recent beautifully illustrated description of the formidable intricacy of
the bifurcation diagrams for equation (1.1) is given by C.Bonatto, J.A.C.Gallas and Y.Ueda [2008].
Numerical evidence suggests that the sequence of bifurcations e.g. at A = 0.2|Parlitz & Lauterborn,
1985] or A = 0.3|Hohler, 1993] is infinite; the positions of the maxima of the saddle-node and flip
(pitchfork) bifurcation curves appear to be equidistant in the variable T''/3 (see also Sato et al. [1983]
for an early attempt to explain this regularity, quite different from the present one)

The question arises whether an analysis of eqn.(1.1) can explain these phenomena from first prin-
ciples. Since the complexity of the diagrams increases with decreasing damping A, it is tempting to
start such an attempt from the region of high A where the solution of (1.1) is unique and give an
explanation for the appearance of bifurcations as the damping becomes smaller. To the knowledge of
the author, there exist almost no published descriptions of the domain of uniqueness of the solutions
of (1.1), with the exception of the result of W.S.Loud [1955] who shows that, if an harmonic term
+ky is present in (1.1), then (1.1) has a unique periodic solution at every fixed I', provided A is large
enough (essentially A > const x I'); it seems, however, that the method is not readily extendable to

lthe index F on the values of I comes from "‘flip"’: the pitchfork bifurcation of the period 27 Poincaré map is in fact
a flip bifurcation of the half period Poincaré map (see Sect.III and VIII)

2The asymptotic expansions for the solutions of (1.1) given in the papers by J.G.Byatt-Smith appear also in the present
work (Sects.V,VI), although derived in a different manner



the situation k = 0 of (1.1). Since the present work is concerned with the regime of large forcing I', 1
refer to some unpublished internal reports, which show the qualitative behaviour of the unique periodic
solutions at high damping [Hohler & Stefanescu, 1987| and establish their uniqueness [Stefanescu, 1989]
for large enough I' in a domain above a line A(T") for which:

. InT
560 A(T)

=0 (1.3)

In a subsequent internal report [Stefanescu, 1990] it was shown that uniqueness is lost as the damping
traverses a line A =~ InI" and that a sequence of bifurcations alternately of saddle-node and pitchfork
type develops for lower A (if Tis large enough). This result was based on a controlled approximation
by means of averaging methods of the (half-period) Poincaré map provided by the Duffing equation
(1.1).The main conclusion was that asymptotically the Poincaré map is well represented by a circle
map:

X = Bcos(xy + %) (1.4)

with 8,3 depending on T" and A. The bifurcation structure of (1.4) is then easy to obtain. This report
remained unpublished at that time. Its results were summarized by the present author in an Appendix
to the work of G.Hohler [1993]. The present work is essentially a repetition of the contents of this
report, including the correction of some calculational mistakes | a more careful development of the
arguments and the addition of some drawings.

It is one of the results of this paper (and of [Stefanescu, 1990])that the "‘tips"’ of the saddle-node
and flip bifurcations, which reach up to the highest values of A at fixed I', lie asymptotically along a
line (cf.eq.(8.1) below): 1
T 12n

These maxima are predicted to be asymptotically equidistant in the variable I''/3 with a spacing given
in leading order by (cf. eq:(8.3) and Fig. 13):

1
A(T) InT — glnlnf—i-.. (1.5)

1/3 1/3 1/3 1/3 ™
SOV =TS TS =TS T~ 1403~ (1.6)

S V3 [T, sint[1/3dt

The problem of the description of the Poincaré map of (1.1) at large T" was taken up again a little
later by G.Eilenberger and K.Schmidt ([1992], [1998]). These authors also derive the circle map (1.4)
as a limit of the Poincaré map using, however, a different approximation scheme. Since these are the
only papers which treat (1.1) in a spirit related to that of the present work - with similar conclusions
- I shall sketch in the last section a comparison of the two approaches.

We introduce next the notation used throughout this work. We change in (1.1) variables to:

oy - 3w 1 A
so that it becomes:
€4 4 2ud + 23 = sint (1.8)

and I' — oo means € — 0, i.e. the coefficient of the second derivative vanishes. The problem of
discussing solutions of (1.8) for small € is a matter of singular perturbation theory, as expounded in the
books by R.E.O’Malley [1974] or D.R.Smith[1985]. the question is well known (for linear equations)in
the semiclassical treatment of quantum mechanics - the (J)W KB method. Eqn.(1.8) is the form of
Duffing’s equation used throughout this paper.

3without consequences for the conclusion



If one changes the time unit further to ¢ = t/,/z,(1.8) becomes:

2
Cclltg + 27"65; + 2% = sin(v/zt), r= \% = P1A/3 (1.9)
This is the limit of extremely slowly varying forcing at small damping if A/ I'Y/3 vanishes as T' — oo and
is an invitation to apply the adiabatic theorem of classical mechanics [Landau & Lifshitz, 1960],[Arnold,
1978]. Eqn.(1.9) is the starting point of the approximations to the Poincaré map of (1.1) developed by
G.Eilenberger and K.Schmidt[1992]

We give next a summary of the behaviour of (1.8) at high damping; the unique solutions that are
obtained are qualitatively different depending on the relative magnitude of A and I' (or of p and €).
Assume A = A(T") is a monotonically increasing function of T', for I' — oo (large I').

If, as T — oo, = A/T?/3 > g > 0, we change variables in (1.8) to:

€ 1

z=px, E=-, p=-— (1.10)
f p
and obtain:
E% 4 2% 4 2> = sint (1.11)
As e — 0,(1.11) reduces to:
2% + i2® = sint (1.12)

It is easy to show that, if & is bounded, (1.12) admits of a unique periodic solution which can be
improved by iteration of (1.11) to a periodic solution zp(t) of the latter; further, zp(t) is unique
[Stefanescu, 1989).

However, if 4 — 0 as e — 0, eqn.(1.8) reduces in this limit to:

23 =sint (1.13)
with the solution:
200(t) = (sint)/3 (1.14)

Corrections to zgo(t) cannot be obtained by iterating (1.8), since the derivatives of xoo(t) at ¢t = 0 are
not finite. We expect nevertheless (1.14) to be a good approximation to periodic solutions of (1.8)
away from ¢ = 0. The departures of the solutions of (1.8) from (1.14) near ¢t = 0 are obtained by a
boundary layer analysis (the book by C.M.Bender and St.A.Orszag [1978]contains an excellent intro-
duction to this subject - treated otherwise in detail in the reference manuals on singular perturbation
theory|O’Malley, 1974],[Smith, 1985|).Let:

t = /o, x = pul/sr (1.15)
so that (1.8) becomes:
e d’n dn 3 —3/5 o 3/5 pb/? 3
WWJJEJFU = sin(Tp )27—77 + .. (1.16)

To zeroth order in p%°, we are interested in that solution of (1.16) which behaves like 7/3 as 7 — oo,

so that it matches xoo(t). If e/u®> — 0 as e — 0 (i.e.A/TY* — o), this solution is obtained by
improving iteratively the solution of:

25+n3 = (1.17)
with the same boundary condition. A "‘conjunction”’ of this solution inside the boundary layer with
(1.14) outside it can be improved to a unique (odd-)periodic solution of (1.8)([Stefanescu, 1989|, [Hohler
& Stefanescu, 1987|: see Section III of this work for related procedures).

e "



If, however, A/ I''/4 — 0 as € — 0, the appropriate boundary layer quantities are:

W A

_ /3/8 _1/8 _ _
t=¢e""r, x=¢e'°n, 7—65/8(— F1/4) (1.18)
in terms of which (1.8) becomes:
d? d 3
d—TZ—l-?y%—i-ng = e 3/85in(e%/®7) :7—53/4%+... (1.19)

As e — 0, the solutions of (1.19) obeying n(7) ~ 7!/% as 7 — —o0 are oscillatory as 7 — +oco and are
damped in a "‘time"’ 7 &~ 1/y — oo.

We distinguish thus three regimes of (1.8) for large I': ()u > po > 0 as e — 0; (i) < po
and ¢/u¥® < const as e — 0; (iii)p — 0, v = p/e®8 < ~g as ¢ — 0. Situations (i),(ii) lead to
unique periodic solutions of (1.8) for large I'; for a proof see the internal report [Stefanescu, 1989|.The
transition to nonuniqueness occurs in region (iii)(cf. eqns.(1.3),(1.5)). We shall thus assume throughout

the present work that:
A 1
’Y:m:ﬁ<’yo as e—0 (120)

and use the notation of (1.18). In view of (1.5), we find it convenient to use instead of u the variable:

ho_34
eln(l) 2T

K= (1.21)
so that bifurcations occur when £ = O(1) as ¢ — 0.

The paper is organized as follows: in Section II, some general preparatory statements are established
concerning the boundedness of the solutions of (1.8) and the manner in which they approach each other
in time. Section IIT introduces the inner and outer expansions associated to (1.8); these are combined
and improved to two special, nonoscillatory solutions X, (t), Xr(t) of (1.8), defined for ¢t < 0(L),
t > O(R) in turn. These solutions # are taken as references for t < 0, ¢ > 0 in turn and the Poincaré
map P is defined in terms of the differences:

on(t) = x(t) — Xp(t),  t<0; vp(t) = z(t) — Xp(t), t>0 (1.22)

In Section IV a precise bound is derived on the region Dy(e) of phase space where invariant sets of the
map P may exist. Sections V and VI establish controlled approximations for quarter period Poincaré
maps Pr, Pr relating sections at ¢t = —7/2 and ¢t = 0 (Pr) and ¢t = 0 and ¢t = 7/2 (Pg) in turn.
In Section VII the complete (half-period) Poincaré map P(e, k) is written down and its limiting form
for ¢ — 0, the circle map II (1.4), is established. Finally Section VIII discusses the extent to which
bifurcation properties of the circle map can be transferred to those of the complete mapping P(e, k)
for small, nonvanishing €. In particular the statements of the Abstract concerning the asymptotic
distribution of the bifurcation lines are derived. The paper is closed with some general remarks and a
short comparison with related papers of G.Eilenberger and K.Schmidt[1992; 1998].

2. General Preparation

2.1. Eventual boundedness of motions

Lemma 2.1 There exists o rectangle:

dx B2

“they are called creeping solutions by G.Eilenberger and K.Schmidt|1992]




so that all solutions paths (x(t),z(t)) of (1.8) eventually get inside it. The constants By, B2 are inde-
pendent of e, if p and £/ are sufficiently small.

Proof:The argument is inspired by and similar to the one due to T.Yoshizawa [1953c; 1953b; 1953a]
and presented in the book of G.Sansone and R.Conti [1964] . We consider the Lyapunov-type function
L(p,z,t) given by: (p = dz/dt)

L(p,z,t) = E(p,x,t) + D(p,z) (2.2)
2 4
E(p,x,t) = R + T _ rsint (2.3)
2 4
. T A
D(p,2) = if oy max (s (G
_ Ly1/2 . Ly1/2
=e(p—(— if pl< (=) x> A
( (u) ) p| (u)
= —2¢(5)V/? if p<-(HYVz>A
Jz I (2.4
z || 1/2 . Al '
= 2. (=1 if p< —(— x| < A
A( P ) (u) ||
— ety if  p<—(Zyreca
I Jz
X . X
——eo- (i i<y coa

where A is a constant, which will be chosen appropriately in the following. The function L(p,x,t) is
continuous and piecewise differentiable. In opposition to the functions considered in Sansone & Conti
[1964] the function L in (2.2) is time-dependent, however in a "‘mild"’ manner: it is 27-periodic. The
choice of D(p, z) is a modification of the one used by G.E.H.Reuter[1951], also presented® in Sansone &
Conti [1964, p.376,ch.VII[,§3|. Differentiation of (2.2) and use of the Duffing equation (1.8) establishes
that:

dL oD 190D

- = —2up? — wcost + 2P ga—p(2/¢p+:z:3 —sint) < =6 < 0,

M (2.5)
if  a,p€CRy, Roz{lx\<A,|p\<<E>”2}

if, e.g. A <2 and pu,e are appropriately small (depending on A, e.g. for A=2, u<1/2,¢e/pu<1/2).
The quantity 0 is independent of (x,p) in CRy. As a consequence of (2.5),for any trajectory (z(t), p(t)
which starts at t =ty in CRy and for any finite interval At,

L(x(t + At),p(t + At), t + At) — L(z(t), p(t),t) < const < 0 (2.6)

as long as the trajectory stays in CRy.
For any (z,y) outside Ry we define two functions, related to (2.2):

p?
Ly(z,p) = e + - + D(x,p) +|z|
5 A (2.7)
P T

SUse of the function offered for a more general situation by G.E.H.Reuter turns out to be appropriate only if the
damping A increases faster than I''/3
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Figure 1: The rectangles Rg,R; used for D(p,x) and the curves Cjip, Cp,

which both increase indefinitely as |z, |p| tend to oo along any direction in the (z, p) plane, uniformly
with respect to the direction. Further, we can replace the rectangle Ry with a larger one Ry, so that
both Lys, Ly, are monotonically increasing outside R; along any ray in the (x,p) plane. One verifies
that e.g. the rectangle

Ry Az < A p| < (2.8)

1
\/E}
fulfills this condition. The various domains of the (x,1/ep) plane that appear in the definition of
D(p,x), eq.(2.4) are shown in Figure 1 for the situation ¢/p = 1/2, ¢ = 1/4. The e-dependence
becomes weaker as € — 0 at constant £/ with this choice of variables, since the changes of D(x,/ep)
between the various domains are proportional to y/e. The rectangle Ry outside which dL/dt < 0 is
shown with a dotted line, the "‘increased"’ rectangle Ry, eq.(2.8) with a continuous line. Let now

Liim = L , 2.9
lim (zg)lg}a(]ﬁ M(x p) ( )

where OR; denotes the boundary of Ry. By our choice of Ry,for a trajectory starting in CRy, as long
as the corresponding function L(x(t),p(t),t) assumes values strictly larger than Ly, it is certain not
to leave CR;. Indeed, by (2.9) crossing OR; requires L < Ly;,. But in CRy, the value L(x(t),p(t),t)
decreases monotonically with time by (2.6) so that, for any value Ly > Ly, there exists a time ¢ at
which L(z(t),p(t),t) = Ly.
Consider now such a value Li and the closed region R in the (z,p) plane delimited by the closed
curve:
Crm : Lp(z,p) = 11 (2.10)

It contains the rectangle R; strictly in its interior. According to the above, all trajectories starting in
CR; reach at some time t the region R since their corresponding L-function achieves the value L.
Such a trajectory cannot leave the domain R by traversing (or turning back from) the curve C,, because
outside Cy,, L > Ly,(x,p) > Ly and this would contradict (2.6). Thus the trajectory is "‘trapped"’ in
R. We obtain the statement of Lemma 2.1 by choosing R as a rectangle containing C,, in its interior:
one verifies that this is so if By =~ 4, By ~ 8. This ends the proof of Lemma 2.1.

The curves Cyy,, corresponding to Lys(z,p) = Liim, €q.(2.9) C, of (2.9)(enclosing Cy;p,) are shown
in Fig. 1.



2.2. The approach to some special solutions

The following describes the manner in which a solution z(t) of (1.8), trapped inside the rectangle
R of Lemma 2.1, approaches a solution xo(t) also contained in R and subjected to the following
supplementary

Condition 2.1 There exist a,b>0, independent of €, so that, for all t in some interval [ty1,ta] with
0<ti<ty<m (modm)
d
@t o) >0 [Tt <b (2.11)

Solutions of (1.8) contained in the rectangle R and obeying this condition will be shown to exist in
Section 3. For any other z(t) staying in R for ¢ > t; we may state:

Lemma 2.2 Assume p/e'/? = AJTY3 < Ag and e/pp = 1/A = 0 as ¢ — 0. Then, for € sufficiently
small, there exist constants K, C, independent of €, so that, for any solution confined to the rectangle
R of (2.1) and for t € [t1,12]:

d d
maxla(t) — xo(t)], "% 22 (1) = “ZL(B)]] < KemOnt=1/e (2.12)
Proof: Let C' < 1 and:
u(t) = ((t) — zo(t)) M=t/ (2.13)
It verifies:
d? d 2(C?-20
eﬁ; +2p(1 - C)di: Tufag(t)? + A =20 . ) 4 3utg(t)eCH-10/e | B2~/ — g (2.14)
Consider the Lyapunov function:
1 d =
L, = 5(5% + 2uCu)? 4 eG(u, t) (2.15)
with C =1 — C and: .
G(u,t) :/ wlF(ut, t)dut (2.16)
0

where uF(u,t) denotes the last three terms of the Lh.s. of (2.14). The forms F(u,t), G(u,t) are
positive definite for t € [t1,to] if, e.g.C < min(1/2,a%/(4A4%)). Using (2.14) we get:

dL - e 0G _

Y= C(WPF(u,t) — —=—) = —2uCu’H (u, t 2.17

= 2O () — 55 ) =~ H (2.17)
One verifies that, with the choice of C' above, if ¢/u = 1/A is sufficiently small, H(u,t) (of (2.17)
is positive definite for t € [t1,t2]. Thus the solution paths (u,du/dt) stay contained in the bounded
domains defined at every ¢ € [t1,t2] by:

Lu(t) < Ly(ty) (2.18)

But L,(t1) = O(e), since (u,du/dt) are contained in the rectangle R of Lemma 2.1 and p//e < Ap.
It follows from (2.18) and (2.15) that G(u,t) = O(1) for t € [t1,t2] and since G(u,t) = u?F(u,t)
with Fi(u,t) strictly positive definite, it follows that u(t) = O(1) for t € [t1,t2]. Further, since
edu/dt + 2uCu = O(¢'/?), and p//z is bounded, we conclude that du/dt = O(e=/2) for t € [t1, ).
Returning now to (2.13) we obtain (using again the bound on u/\/e for the evaluation of the time
derivatives) the statement of the Lemma.

The bound u/\/e < Ay delimits in the I' — A plane a region where the damping may still be quite
large to ensure at small € uniqueness of the periodic solution of (1.8). In this paper the concern is the
region of relatively small damping (A = constInT") where uniqueness gets lost.The domain of larger
damping may be treated completely, as is shown in the unpublished report |Stefanescu, 1989]



3. Inner and Outer Expansions. Reference Solutions

3.1. Left hand reference solution
The outer expansion
For small ¢ and p and for ¢ away from nm, we expect to obtain an approximate solution z(t) of
e + 2ud + 23 = sint (3.1)

by simply starting with:
zoo(t) = (sint)/? (3.2)

and determining step by step with the help of (3.1) the coefficients xy;(t) of an expansion:

o(t) = Y phelan(t) (3.3)
k,l

Equating to zero the coefficients of the various powers of 1 and € we obtain successively:

200 Z00
z10(t) = —=—5-, zo1(t) = ——5-, .. (3.4)
3 33,
and so on, so that we may state, in general:
Lemma 3.1 With the definition in (3.3):
$kl(t) _ t1/3—5k/3—8l/3 Z aqut2q (35>

q

where the sum is uniformly and absolutely convergent for t in [—m + o,m — o, for any o > 0.

e

The proof is done by induction: the set of coefficients {zko(¢)} and {xg;(¢)} form "‘closed"’” groups
allowing the recursive determination of zyo(t) in terms of the zy,(t) with k7 < k and of zy(¢) in terms
of xgy with 7 < . The coefficient zy;(t) may be determined in terms of the xgy with k/ < k,Ir <
and k/ < k,I/ < I. Thus we may determine successively the sets {xy;},{z2},etc.. From (3.4), we see
that,e.g.:

t

2 4/3 2 2+sin?t, ¢
z10(t) = —§t74/3 cost () , xo1(t) = —)7/3

sin t 27 ¢4/3 (sint
The ratio t/sint is a holomorphic, even and zero-free function of t in a disk of radius 7 — o around
the origin; the same is true of (t/sint)*?3 which justifies the statement about the convergence of the
series in (3.5) in this situation. The same is true for xo1(¢) and is then transmitted recursively to all
other coefficients. This ends the justification of Lemma 3.1.

The coefficients ay, in (3.5) may be obtained step by step directly as follows: let o = p/t?3. 3 =
£/t8/% and denote by:

D(z) = i + 2ud + 2° (3.6)

Then one verifies that eq.(3.1) means(vgl.(3.5)) :

D(tl/3 ZaquakﬁthQ) _ Z bquakﬂlt2q+l _ Z(_l)q
q

k,l,q k,l,q

t2q+1

S — 3.7
(2¢ +1)! (37
where the by, are combinations of the apuyy with k/ < k, Ir < [ and ¢/ < g, but with only one
term containing ag;, namely 3a%00aqu. This equation allows the recurrent determination of the ay,
by equating the coefficients of o824+ on both sides, starting with aggo = 1. The coefficients with



qg=0 (or k=0 or ! =0) build a "‘closed"’ group: the ag;y may be determined successively from aggg.
Then the calculation of ag, for ¢ > 0 requires the aguq with at least one strict inequality in the set
(kt <k, I <l,qr < q).

An obvious question is: to what extent do we satisfy (3.1) if we restrict ourselves to a (K, L)
truncation of (3.3)? From (3.7) we see that terms containing by, with & > K or [ > L are, in general,
nonvanishing, so that the action of D produces terms of O(tat1 tgL41) ie. O(tulK +1)/t5E+D/3 4
te(L +1)/t8E+1D/3) This shows that a truncation of (3.3) is approximately a solution only for ¢ away
from zero, i.e. outside the boundary layer, which justifies the name outer expansion.

The inner expansion
The substitutions: 2 = /%y, t = £3/87 change (3.1) to

d277

d . .
pres N 43 =38 sin(sg/ST) (3.8)

2
—l—’yd

which v = 11/5/8. It is natural to look for a solution of (3.8) as an "“inner ezpansion"’ in terms of the
parameter g3/4;
() = no(r) + /4 () + ¥ Pna(7) + ... (3.9)

F2q+1/3

where the 7,(7) are in turn solutions behaving like as 7 — —oo of the differential equations:

d? d .

2y —— 1

) + 27 17 + no(T (3.10a)
d? d 3
M 27T 4 3y (r)?m(r) = — (3.10b)
dr? dr 6

d? dna 70

ﬂ + 2y—= 4+ 3no(T ) n2(7) + 3771(7')2170(7') = — etc. (3.10c¢)

dr? Tar 517

Because we wish the solution 7(7) to approach at large —7 the function (sint)'/3/e/8 it is natural
to choose those solutions of (3.10a),(3.10b),etc. which behave like 72411/3 a5 —7 — o0, corresponding
to the terms (—1)9e34/4724+1/3 /(2¢ + 1)! of the Taylor expansion. Concerning the expansion (3.9) it is
easy to show

Lemma 3.2 The solutions n, appearing in eq.(3.9) exist and are uniquely determined by the require-
ment 1y ~ 72013 g5 7 — —c0. Their asymptotic expansion for T — —oo is given by:

1g(T) = +24+1/3 Zaqu,ykaSk/SfSl/Sj g=0,1,2.. (3.11)
k.l

with the same agyq as in (3.5).

As before, one verifies by induction that (3.11) with coefficients a, is a consistent asymptotic ap-
proximation for the solutions eqns.(3.10a),(3.10b),etc. obeying n,(7) ~ 729t1/3 as 7 — —occ0. The
coefficients ayq are determined by substituting the asymptotic series (3.11) for each n,(7) in eq.(3.9)
and requiring that (3.8) be verified to all orders in 7 for all € and . Denoting ¢t/ = e3/87, -
B = 7=%3 and by D the action of the right hand side of eq.(3.8) on functions 7(7), one Verlﬁes.

15(2 7-1/353q/4dqu,yk7_f5k/3781/3+2q) = T(Z Bqu(t/)Qq(a/)k(ﬁ/)l) =T Z ((_21(1)1(75;;?1 (3.12)
klgq klq

with Bqu analogous to by, of eq.(3.7). Eqn.(3.12) allows a recurrent determination of the ay, starting

from agopo = 1. The equations determining from (3.12) the @, are identical to the corresponding ones
(3.7) for ayq if we replace t/ <+ t, o/ <+ o, B/ < 5. This shows that, indeed, axy = akiy-

10



We notice that the calculation of the asymptotic behaviour of n,, ¢ > 0 requires knowledge of the
behaviours of ng for ¢/ < g, since ng occurs in the equation for 7, (vgl.eq.(3.10c)). The relation
between outer and inner expansions is apparent if we substitute 7 = te=3/8, 5 = ze=1/® in (3.5): one
obtains the sum over g of the series (3.11), i.e. the asymptotic behaviour (at large —7) of the inner
expansion is the same as the low ¢ behaviour of the outer expansion.

We now show that, indeed, the requirement concerning the asymptotic behaviour selects unique
solutions of (3.10a), (3.10b), (3.10c). We shall show directly that unique solutions exist admitting
(3.11) as asymptotic expansion, from which the previous statement will follow. Using the method of
the variation of parameters we set up an integral equation for the difference

ug(1) = 1g(7) — (K, L) (3.13)

where n((lK’L) is the truncation of (3.11) after (K, L) terms. For ¢ = 0 the equation reads:

uo(7) = /T e V(=) (v1(T)vo(11) — va(T)v1 (1)) (H (1) — 377((]K’L)u(7'/)2 — U(T/)g)d’rl (3.14)

where
g™ dny™") (K,L)\3 K._—5K/3-8L/3 2/3 _—5/3
H(r) = —( d(;_g + 2y (c)lr +(ny ) —T)="1" /3= /O(’)/T_ / ,T /) (3.15)
and /3
e T 3V3
N g QVI _4/3
vi2(7)e SUA[ 16 sin / cos( 7 ) (3.16)

are two linearly independent solutions of the equation:

2

% + 27% + 305 ) 2u(r) = 0

The approximation indicated in eq.(3.16) is related to the WKB approximation and is discussed in
a related context in Appendix C. One can show now by well-known methods that eq.(3.14) admits
of a unique solution in a space of bounded continuous functions on (—oo, —a),a > 0 with the norm
sup |72K/3+8L/3+1y, ()|, This solution is obtained by iteration of (3.14) which also sets a bound on the
error made by truncating (3.11) at the (K, L) step: it is® is O(y%7—5K/3-8L/3-1) " Gince the order of
magnitude of the error is smaller than the last term included, this shows that the expansion (3.11) is
indeed asymptotic; for K, L = 0 we obtain the statement of Lemma 3.2 for ¢ = 0.

For ¢ > 0, the equations (3.10a),(3.10b) and their analogues are linear and so are the corresponding
integral equations (3.14); the solutions are given simply by the integral over (correspondingly modified)
terms like H(7) of (3.15); these terms contain solutions n, with ¢/ < ¢. The error of truncation after
step (K, L) is now C/(q)r2a~1=5K/3=8L/3,K " with C(q) a (¢—dependent) constant.

The complete left hand reference solution

Although it is intuitively clear that eqns.(3.5) and (3.9) (using the expansion (3.11)) are expansions of
the same solution of eqn.(3.1), it is not true that truncations at increasing K, L fulfill (3.1) increasingly
well on the whole interval [—7/2,0]. Following methods related to those of O’Malley [1974, ch.IV]
and Smith [1985, ch.VI], we show how the two expansions have to be combined to yield a uniform
approximation of the solution on [—m/2,0]. We denote by:

gD = Z pFelay (t), l"z('Q) =c'/® Z g3/ 4ny(7) (3.17)
E<K,I<L q<Q

6if 4 = 0, then K must be set equal to 0
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i.e. the (K, L)—, Q— truncations of the sums in (3.5),(3.9) and take a number d, 0 < d < 3/8. With
these we set up a (K, L, Q)-approximant to a solution of (3.1):

Za(t) = Yolt, eNaTED) () + x4 (¢, e\ D (1) (3.18)

where xo(t,e?) is of class C2, = 0 for t > —ae? and = 1 on [~7/2,—be?], 0 < a < b; further for
—m/2 <t <0,
Xl(tv gd) =1- Xo(ta Ed)
The function z,(¢) is not a solution of (3.1) but is uniformly close for small  and € to such a solution
on —w/2 < t < 0. Indeed, substitution of 28 of (3.14) in (3.1) leaves terms of O((e/t8/3)L+1 4
(1/t°/3) K+ 1) uncompensated,; xEQ) verifies (3.1) up to terms of O(e3(@+1)/4+3/87(2Q+3)) thus, using the
notation of (3.6), for —7/2 < t < —ae? and —be? < ¢t < 0 in turn:
|D(JI(()K’L)) _ sint| — O(E(L+1)(178d/3) + M(K+1)(175d/3))’

(3.19)
]D(ml(-Q)) — sint| = O(e42@+3)
On the interval (—be?, —ae?) the functions x;, x, have derivatives of O(¢~%) and second derivatives
of O(¢724). These are multiplied by the difference of the (truncated) asymptotic expansions of z,(t),
xi(t) in this interval of t. As we have seen, the coefficients ay, of these expansions are identical. The
difference may then be estimated to be:

AQ.K,Lit)=|(mo—z)t) < Y apgt®™/ 3!
>Q,k<K,<L
+ Z 83(]/4—}-1/8uq(7_)
a<Q

where wu,(7) are the "‘rest"’ functions introduced in (3.13). Letting 7 = t/¢3/% this expression is

evaluated at t = £% to be:
A(Q,K,L,éd) < C(K, L)6(2Q+1/3)d + C(Q)eL<1_8d/3)(MK5_5K‘1/3)51/2_‘1

where C(K,L),C(Q) are constants which depend on the truncation points, but not on . Similar
estimates are valid for the first and second derivatives of the difference A(Q, K, L,t = ¢%). Clearly, it
is possible to choose @, K, L such that even Ae~2? vanishes as ¢ — 0 (so as to take into account the
derivatives of the functions x;,X, in (3.18)) so that we may state, using the notation of (3.6):

Lemma 3.3 The approzimant z, of (3.18) satisfies :

sup | D(z,) —sint| < ¢o(K, L, Q)e” (3.20)
—m/2<t<0

where P = min(K, L, Q) and ¢y, c1 are positive constants.

With this we can now show the existence of a solution X (¢) of (3.1) which "‘interpolates"’ between
the outer expansion (3.3) and the inner expansion (3.9): it is approximated by z,(t) uniformly on
—7m/2 <t < 0. We write:

X1(t) = xa(t) + r(t)
and require X1 (—m/2) = z4(—7/2), X1 (—7/2) = @4(—m/2). Then r(t) is the solution of the integral

equation :

r(t) = i/t exp(fﬁ(t/ —t))(v1(thva(t) — v (t)va(t))(D — sint)(xy)(t) + 3zar? + T3)dt/ (3.21)
—7/2 £

12



where vy 2(t) exp(—p/e)(t + m/2) are solutions of the variational equation around z,(t) and D is the
Duffing operator (3.6). We need here only rough bounds on these solutions. For ¢t < —g3/8—d (for some
0 < d < 3/8) these solutions are well approximated by "“WKB formulae"” and may be chosen such
that they have a limit as € — 0 (see Section 5.3 and Appendix C) for t = O(3/3). It turns out that, if
the solutions are chosen to be O(1) at t = 0, then they are O(¢'/1%) at t = —7/2.The derivative with
respect to 7 is then O(1) at ¢ = 0 but O(e~/1%) at ¢t = —7/2. With this, using the bounds (3.20) one
shows in a well-known manner that, if the integer P is sufficiently large, eqn.(3.21) admits of a unique
solution of magnitude sup_ 5o [7(t)] < CeP=1 which can be obtained by iteration. We can thus
conclude this section by:

Theorem 3.1 Egn.(3.1) admits of a solution Xp(t;e; K, L, Q) uniformly approzimated to O(eF~1)
on —m/2 <t < 0 by x4(t),eq.(3.18) and which obeys: Xp(—7m/2) = xo(—7/2), dX/dt(—7/2) =
dxe/dt(—7/2).

The estimates above are very rough and distort the numerical simplicity of the solution Xp: the
dependence on K, L, () is numerically irrelevant: for all practical purposes

Xp(t) = (sint)/3, —7m/2 <t < =¥, =eVye(r), —e? <t <0 (3.22)

(with much freedom in the choice of 0 < d < 3/8).The fact that the proof relies on the possibility
to choose the integer P large originates from its ignoring the "‘destructive"’ action of the rapidly
oscillating functions vy 2(t), which is apparent in their ""WKB"’ form.It is this very weak dependence
on the cutoff parameters (K, L,Q) (and thus on e, pu) which justifies calling X (¢t) the (left hand)
reference solution. Its behavior near ¢ = 0 is shown in Fig.2. The figure is virtually independent of e,
if time and magnitude are scaled appropriately.

3.2. Right hand reference solution
Choice of the inner expansion

We turn now to the interval 0 < ¢ < m/2. Obviously the outer expansion (3.3) is formally the same,
with the same coefficients ay,. Changing to the "‘inner"’ variables 7,7 we consider again an expansion
in terms of £3/% similar to (3.9) and expect the asymptotic form of its various terms to reproduce the
coefficients ayyq, appropriately rearranged. As will be apparent, the result is not the continuation to
7 > 0 of (3.9). There appears now an ambiguity in the definition of (3.9): the boundary condition
that the solutions 7,(7) of (3.10a),(3.10b),etc. should behave like 729+1/3 as 7 — oo does not select
a unique solution but is now obeyed by all solutions as a consequence of the damping term. The
damping time is 1/ ~ 1/(¢3/®In1/e), which is shorter than the 7-duration of O(1/¢%/®) of a quarter
period. Equations (3.10a), (3.10b), etc. admit however of solutions with almost no oscillations even at
times 7 < 1/v: we write to this end, in (3.10a)(i.e.¢ = 0), for some integer r and appending an index
R (for right hand side):

nor(r Zm IV 4+ o(r) = 78 + uo(r) (3.23)

1/3—5k/3

where the noxr(7) (k= 0,1,..) are, in turn, the solutions behaving like 7 as 7 — oo of:

d*1oor
dr?

+NoR =T (3.24a)

dQT]()IR 2 anOR
d+2 + 3n0orM01R = —2 paat i

(3.24b)
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dnoir

d*no2r
T2k 3norM02R = —2 e 3M00RMG1 R --- (3.24c)

dr?
These equations are obtained by equating the coefficients of various powers of + after substituting
(3.23) in (3.10a). Now the condition on the behaviour for 7 — oo selects a unique solution because the
damping term is absent”. It is easy to verify that the algorithm to obtain iteratively the asymptotic
expansion of the solutions ngrr leads indeed to:

MokR ~ Z apgor /3 OR/8I (3.25)

l

with the ago of (3.5). The function ug(7) is the solution of O(y" 1) of the equation:

&2 d .
FUO +2 % + 3(nq ()2 + 377(() )u% +uf = Oyl B7RN/3) (3.26)

Such a solution may be obtained by iteration, repeating the argument of (3.14).
The equations for

1ar(T) = 190R(T) + 1R (T) + 7Y 1g2R(T) + .. (3.27)
are linear and similar to (3.24b),(3.24c), deduced from (3.10b),(3.10c) expanding in powers of v and
setting appropriate boundary conditions at 7 — oo.

The complete right hand reference solution

We can now repeat the argument of section 3.1 and obtain a solution for 0 < ¢t < 7/2 from a superpo-
sition like (3.18):

Tar(t) = Xor(t, oy 1 (1) + xin(t, ) (1) (3.28)
where we have now appended an index R to the various terms,
K
@) = B (1) + 22 ST () (3.29)
1<¢<@Q

and nég) are the sums (3.27) restricted to K terms. Repeating the steps following eqn.(3.19) we state

directly:
Lemma 3.4 The approzimant x,r(t) of (3.28) satisfies:

sup |D(z4R) —sint| = O(e°rF) (3.30)
0<t<m/2

with P = min(K, L, Q) and cr is an (¢ - independent) constant.

We would like now to repeat the procedure leading to the integral equation (3.21): there is, however,
a difficulty because a direct analogy to (3.21) would require an integration backwards in time starting
at t = /2. The exponential term increases in this case indefinitely as ¢ — 0 and precludes our setting
bounds on r(t). We have to start the integration at ¢ = 0 and set :

Xpt) = wan(t) + (1), Xp(0) =zia(0), 520 = T () (3.31)

The values x;r(0) are obtained from the solutions of the equations for ngrr ,¢ < Q, k < K (cf.(3.24a),
(3.24b), (3.24¢),...):

Xp(0)=e® > S FnuR(0) (3.32)
0<q<Q,k<K

and similarly for dXr/d7(0).We conclude this section by stating in analogy to Theorem 3.1:

"we do not give an explicit proof of this, because the paper contains many similar arguments
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Theorem 3.2 Eqn.(3.1) admits of a solution Xg(t;e; K, L, Q) uniformly approzimated to O(°RP)
on 0 <t < w2 by xqr(t),eq.(3.28) and which obeys: Xr(0) = x,r(0), (eq.(3.32)) dXg/dt(0) =
dzar/dt(0).

The discontinuity at t = 0

We evaluate now X7,(0), dX1(0)/dr using (3.10). The correction r(t) obtained from (3.21) may be
made as small as one wishes, by letting the cutoff integers K, L,Q be large enough. Then it is true

that :
0) =&'/8) " &34, (0) = £'/3n.,(0) (3.33)
q<Q
where the 74(7) are the uniquely defined solutions of (3.10a),(3.10b),(3.10c). These solutions may be
expanded in powers of ~, similarly to (3.23) (we append from now on an index L for symmetry):

1g(7) = nr(t) = Y Y ngre(r (3.34)
k<K

where the 74,1 verify the same equations (3.24a),(3.24b),(3.24c) with a boundary condition (i.e. a
prescribed asymptotic behaviour) at 7 — —oo instead of 7 — oo. It is easy® to relate the solutions
corresponding to these two boundary conditions, which interchange 7 and —7. One verifies:

nooL(T) = —Moor(—T), no1L(T) = NMo1r(—T7)

(3.35)
No2r.(7) = —no2r(—7), ...or(7) = —mor(—7)
so that:
= 51/8253q/47k77 rp(0)(1— (—1)FF) =218 N &by, (0) (3.36)
q,k=2p
and J p
X TqkL
A -9 1/8 3q/4 kgL .
(0 =28 7 VF=1=(0) (3.37)

q,k=2p+1

Since ngor(0) # 0, it follows that X (0) # Xgr(0), thus the two reference solutions are not the
continuation of each other. There is a jump of O(¢/8) at t = 0 in going from the one to the other. The
derivatives have a smaller jump of 0(51/87). We call these solutions "’reference”’ solutions because
the motions which we study consist of small oscillations around them. Eilenberger and Schmidt call
them creeping solutions: the left hand solution X (¢) is the motion of a particle which stays at the
bottom of the moving potential well V(x) = 2 /4 — x sin t for all times away from ¢ = 0; near t = 0, the
velocity of the minimum of the well at z,,(t) = (sint)'/3 becomes unbounded and the particle cannot
follow it: for ¢ > 0 it will oscillate around the minimum with a larger amplitude (see Sect. 6.1). It
behaves as if it had received a kick at t = 0°. In order that the particle follow the minimum of the
potential for ¢ > 0 away from zero it has to start at ¢ = 0 from (Xr(0),dXg/dt(0)): this is the right
hand creeping solution: it will stay near the minimum until ¢ &~ 37 /2. In Fig.2 we show the appearance
of the reference solutions ng,ny near t =0 (ngr,L = 571/8XR7L).

8invoking the uniqueness of the solutions
9However, there is no real "kick"’ and in my view the model proposed by the authors with a discontinuous force at
t = 0 is not a correct description of the appearance of the circle map for the Duffing equation
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Figure 2: The solutions nz (1) = e~ /8 Xy g(t) near 7 = 0

3.3. The Poincaré map

We define the time-2m Poincaré map with respect to the reference solutions Xr,(t), Xr(t) constructed
in the previous subsections. If we choose the same cutoff parameters K, L in both, it is true that (to

order e¢F):

Xu(-n/2) = ~Xn(n/2), “CE(-r/2) = - (x/2)

As already noticed (cf.eq.(1.2)), if z(t) is a solution of eqn(3.1), then —x(t — ) is also a solution. Thus
the solution starting at t = 7/2 with the values — X (—7/2), —d Xy, /dt(—7/2), is simply —X1,(t — 7),
which we denote by X11(¢). This solution is a "‘reference"’ solution up to ¢ = m where it is replaced
by Xr1(t) = —Xg(t — m) . We write, for a solution z(t) of (3.1):

z(t) = X(t) +or(t), —m/2 <t <0, z(t) = Xgr(t) +vr(t),0 <t < m/2

x(t) = X1(t) +opi(t), /2 <t <, x(t) = Xp1(t) +vg1(t), 7 <t < 37/2 (3.38)

x(t) = Xpra2(t) +vra(t),3n/2 <t < 2w , ete.

We define the time-2m Poincaré map Pqy by:

deg

(37/2)) (3.39)

If z(t) is the unique periodic solution of (3.1) then it must be odd periodic and leads thus also to a
fixed point of the half-period Poincaré map:

o (v (—m/2), L (~7/2) = (v1a37/2),

d dULl
P (vr(=m/2), —, —E£(=7/2)) = (—vpa(7/2), ——= (1/2)) (3.40)
The symmetry ¢t — ¢t + 7, © — —x implies that, in fact:
Py=PoP (3.41)

Indeed, under P the point Pj(x(—n/2),dz/dt(—m/2)) corresponding to a solution z(t), moves to
Py(—x(n/2), —dz/dt(r/2)); Also, the point P} (x1(—m/2), dx1/dt(—m/2)) corresponding to the solution
x1(t) = —z(t+7) moves to Pl( x1(m/2), —dx1/dt(7/2)). But x1(—n/2) = —x(n/2), dxy/dt(—7/2) =
—dz/dt(r/2), i.e. P! = Py and —z1(n/2) = x(37/2), —dx1/dt(m/2) = dx/dt(3w/2). Therefore P} is
at the same time the image of the original point F; under P o P and its image under Py. This shows
the validity of (3.41). Now,the mismatch at ¢ = 7/2 between — X (t — 7/2) and Xr(t) may be made
arbitrarily small, simply by increasing the truncation orders, according to Theorems 3.1 and 3.2. We

shall ignore this small correction in the following and regard P as being simply:

P(e, p) : (vi,(—/2), dvp Jdt(—7/2)) = (vr(n/2), dvg/dt(r)2)) (3.42)
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In the next section, the definition will be further modified, by introducing another independent (time)
variable.

4. The Invariant Sets of P(¢, )

4.1. A characterisation of possible invariant sets

The function v (t), defined as the departure of a solution z(¢) from the reference function X (t)
(cf.eq.(3.38)) obeys:
d? d
s# + QM%L +3X20; +3X102 403 =0 (4.1)
A similar equation holds for the function vg(t), eq.(3.38), the departure of x(t) from the right hand
side (t > 0) reference solution Xg(¢). It is convenient to introduce new independent variables for ¢ < 0,

t > 0, in turn:

—T0e3/8 t
0, = 31/21/2 / Xp(thdtr,  0p =321/ / Xp(trdtr (4.2)
t T

0e3/8

for a 79 such that X (7), Xr(r) # 0 for 7 < —79, 7 > 79, in turn. In this section we prove the
following:

Theorem 4.1 If the Poincaré map P(e, u) has invariant sets, then, for e sufficiently small, they are
contained in a rectangle:

d
Do:  fou-m/2)h |Gl (/2| < Me S 43)
L
with (cf.eq.(1.21))
7 3 A
= = = - 4.4
= k(e) eln(l/e) 2InT (4.4)
and M independent of € .
With this definition of k(¢), the "‘damping factor"’ reads:
exp(—At) = exp(—gt) = ert (4.5)

Since (as will turn out) bifurcations occur when x = O(1), we shall use this latter notation from now
on.
4.2. A qualitative argument

To explain intuitively the origin of this theorem, we notice first that, as a consequence of Lemma 2.2,
all solutions of (4.1) must obey eventually

lop (=7 /2)| < K" /4 |dup Jdt(—n/2)| < Ke1/2e0m/4 (4.6)

with K,C of (2.12). Indeed, the reference solution X (¢) obeys condition 2.1 of Sect. 2.2 on an
interval [—37/4, —m/4]: there X1 () ~ (sint)"/? (cf. eq.(3.22)) and one can choose a,b ~ 2-1/6. Thus,
invariant sets can be only subsets of the rectangle (4.6). Using the variable 01, eqn.(4.2), the last
inequality is transformed into (with a redefinition of K):

\dvr, /dOr (-7 /2)| < KeCrm/4,
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With this in mind, we perform a change to a new dependent variable wy (61) through:

w 0 K s (07
vp(t) = (_;'(L)Ll)/QE (t+m/2) ¢ (4.7)

where o > 0 is for the time being unspecified. Clearly, v (—7/2) = wr(0(—7/2))e®. The function wy,
verifies for ¢ < 0:

d>w h2(0 .
72L+wL(1 +gL(6L)) —w%h(ﬁL)—i— ( L)wi =0 (4.8)
dos 3
where:
hoy) — e 4.9
(0r) = W (4.9)
e(dXp/dt)>  ed®Xp/dt? 5 In*(1/e)
0,) = = _ = _ 4.1
gL( L) 4 X% 6 X% K€ SX% ( 0)

Since (—X1)(t) ~ (sint)Y/? for t < —10e%/®, one checks that g7,(01) ~ e(t~%/ +t~2/31n?(1/¢)) and is
thus O(1) at t = O(£%/8), drops off at larger |t| and becomes O(e1n?(1/¢)) at t = —w/2. The function
h(61) is not monotonical but has a minimum at a t of O(1/(kIn¢)) where it is O(e"™/>*%(k In(1/¢))/?).
It is O(1) at t = O(e""+2%), if K +2a < 3/8 but stays otherwise o(1) down to t = O(3/8). We denote:

2 1
p:mm<mi;a%> (4.11)

so that h(f) is O(1) at t ~ &%.if p < 1/8. The following is a qualitative argument for :

Statement 4.1 If p < 1/8, the order of magnitude of vg(mw/2) is €™ (i.e. smaller by a factor <™
than vy, (—m/2)). If p = 1/8, then vr(n/2) is O(e3/1657/2) and this order remains unchanged in the
following half periods.

"ne 1"

The essential point in the argument is that the magnitude of the jump of the "‘reference"’ solutions
X1(t), Xg(t) is O(c'/®). Eqn.(4.8) describes an oscillatory motion in a time(6)-dependent potential
which has a single minimum at wy, = 0. If |wg| < const at t = —m/2, one expects that this motion
remains bounded, uniformly with respect to e, at least as long as |h| < const, i.e. down to times of
O(g3P). At such values of ¢, according to (4.7), vr(t) is then of O(eP). The order of magnitude of
v (t) is likely to stay unchanged down to ¢ = 0; there, the reference solution is changed from X, (¢) to
Xr(t), which means a shift of O(¢'/®). If p < 1/8. this shift is unnoticed: the function vg(t) has the
same order of magnitude as vy, (t) and we shall show that this is preserved up to ¢ of O(¢F). Using a
change of variables similar to (4.7):

0
vR(t) = %/?EKH?”’/Q (4.12)
XK
we verify that wgr(0g) obeys:
d*wr 2 Wi 2
22 T wr(l+gr(0R)) + wrk(0r) + —k"(0r) = 0 (4.13)
R

with gr(f : R) analogous to gr,() of (4.6) and
8m‘/+3p/2

e

(4.14)
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The function k(Ar) is monotonically decreasing from O(e3P/273/16) at t = O(£%/8) to O(e"™/2+3P/2) at
t = /2. Now, if at t = O(e?P), vg(t) = O(eP), it follows that wg(fgr) is O(1) there and, since the
motion described by (4.13) is oscillatory and - hopefully - bounded, it stays so up to t = 7/2; there,
consequently, vp(m/2) = O(57/2+3P/2) | This is O(e""+%) if p < 1/8. Thus, in this situation we start
the next half period with a value of vy (—7/2 + 7) damped with respect to the original one by a factor
e"™. As announced in Statement 4.1, if p < 1/8, the new half cycle starts with a value of «a, increased
by km. After a finite number of cycles, a will be such that the inequality p < 1/8 is no longer valid.
When this occurs, the magnitude of vy (t) at t = 0 is o(c'/®) and, since the jump of the reference
solutions is O(g!/®), vg(t) is also of O(e'/®). Then, the change of variables (4.12) with p = 1/8 shows
that wr(#) is O(1) when t is of O(¢%/®) and it follows that vg(7w/2) is of O(%P/2) = O("7/2+3/16) a5
stated in Theorem 4.1.

To conclude, if we start with a value a such that p < 1/8, i.e.a < 3/16 — k7/2, it will increase in
the following half cycles until it gets over this bound; in the succeeding half cycles it does not get any
more below it. Indeed, if we start with a > 3/16 — k7/2 = ap, h(t) is O(e®), with s > 0 at (—t) of
O(%/®) and v(t) is there of O(e'/8+5) : it is thus at least a factor € smaller than the jump of the
reference solutions. The motion continues at t > 0 with oscillations of O(c!/®) around the reference
Xg(t); their amplitude decreases gradually (due to the factor X;lﬂ) and, as a consequence of the
damping, becomes O(e"7/2+3/16) at + = 7 /2. Thus, once solutions are "‘trapped"’ in a rectangle (4.3),
they stay there for all time.

For a proof of Theorem 4.1 (and of Statement 4.1), one has to place indeed bounds independent of €
on the magnitude of the solutions wr, g(6) of eqns.(4.8),(4.11) and also justify the preservation of the
magnitude of the solutions in the transition region (—7peP ,79eP).

4.3. The interval —7/2 <t < —1(e

We show that, if the energy of the oscillations of wy, is bounded at ¢t = —7/2, it stays bounded up to
t = —71pe’P, uniformly with respect to e, if 7y is sufficiently large. To this end, we consider the energy
associated with (4.8):

2
B0) = 5 (55) + gut [(1+9000)  2wnh(0r) + futh(o,) (4.15

The quantity in square brackets is positive definite and larger than 1/3 4+ ¢(01), so that (g(6r) > 0):

wi(91)] < v/6E(@y), fgf(em

It follows that, if £ > 1 and for those values of 0, for which |h(f1)| < 1

< 2E(9L) (4-16)

dh

dE dg
EO)? ([ |-—=
‘ <3 ( L) (d@L

o,

1 ,[dg 2 dh 1 , dh
= Zw? | =L o Sl h—
‘2““ [d@L 3" ag, 3" ag,

> (4.17)

This inequality implies that, if the energy at —m/2 is bounded by a number Ey and if 791 (Ep) is such
that h(rore®) and g(19re®) are so small that:

1 . .
F > 3g(7‘0L€3p) + Gh(TQLE‘Sp)
0

then E(7o1e%) is bounded. These inequalities imply that |vy (0%, |de/d0L(TOL53p)’ are bounded
by C(FEy)eP at these values of t. The constant increases as Ej increases.
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4.4. The interval (—711, Tore’")

Changing variables to

t =oel/?7P, v, = VeP (4.18)
one transforms (4.1) to
d*v av
. 2pel/2-P I ( ) - 3(X2e7 )W +3(Xe P)V2 4+ V3 =0 (4.19)
£
For t in (—7o.e,0), it is true that | X e 7P| < 7'0/3. Also, one verifies that, at t = —7o.e%, |dV/do|

is O(1). Thus the energy associated to (4.19) is bounded by a constant at t = —7o7e%. Further, it is
true that, since the potential function is bounded from below by V*/6,

V(o) < 2EY/4 (4.20)

)

B(0)/* < B(—rore®)M4 + 2 <2 AR 1/3> (4.21)

Then, assuming E > 1, we may bound

4B poa (3 |dX0=?|
o 2 do

dXreP
do

and, integrating this inequality from —7o7e% to 0:1°

It follows that both |V| and |dV/do| are bounded at t = 0 and therefore:

de(O)’ < CeP (4.22)

oL () < Cen, |

With our definition (4.11) of p, the departure vg(t) of z(t) = X1 (t) +vr(t) from Xg(¢) is also of O(eP)
and the same is true for dvg/do(0). With the change of variables (4.18), with vy replaced by vg,
we obtain an equation identical to (4.19) with Xpr(¢) instead of X1, (¢). The same argument as before
shows that the energy associated to it is bounded at ¢t = 7oreP, for some (at this stage arbitrary)
choice of Tor. It follows that |vr(Tore®P)|,|dvr/dORr(T0Re®)| are bounded by C(rog)eP. Clearly, the
value of C(7gR) increases with mp.

4.5. The interval (%7 £%),q < 3p

In this interval ! ~ 1 and we may write:

1 (Bop\>/® 3v3 ,
k(Or) ~ 7 <90R> . o e 12808 (4.23)
ToRr R

The range of values of 6 corresponding to this interval may become arbitrarily large if € is chosen
sufficiently small. We define wg through equation (4.12): it follows from the previous paragraph that
\wg|, dwgr/dfg are O(1) at t = £3P. We shall show that wg and dwg/dfg stay bounded in the whole
interval (¢37,¢9). wg(f) obeys eqn. (4.13) and by analogy to (4.15), with the same notation for the
energy, but the replacement of h(67) with —k(6r) we may write:

dE _ 1 ,dgr wi dk 1 4kdk

+ o g

—— == = 424
dop 2 RdHR 3 dg A6 (4.24)

104f p = 1/8 there are also constant contributions of the upper limit t=0; they do not play a significant part
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We cannot repeat the argument of paragraph 4.3 because, if we try to increase the value of 6y to
ensure an inequality like (4.17) we increase at the same time the bound on the possible energies (see
the end of paragraph 4.4). One seems to need a rather long detour.

In (4.23), dgr/dOr, dk/dfR are strictly negative, so that the only term which may change sign is
the middle one with w%. Thus:

dE 1, 5 | dk
— < = — 4.25
aor = 3% g (4.25)
We can use now a bound on wg similar to (4.16) to derive the inequality!!:
dE dk
— < CE**(0p) | 4.2
a6 <~ CF 08 | g, (4.26)

Unfortunately, we cannot draw any conclusions about the boundedness of E for large 0 diretly from
(4.26) unless some other restriction on E(6g) holds. We shall show in Appendix A that, in fact, E(0r)

increases for large O at most like 9]3%/4_3 for some s > 0, i.e. for g in this time interval:

0 3/4—8
E(0Rr) < const (90};> (4.27)
Using this in (4.26) we obtain:
B <C<9R>9/8—3s/2 <90R>3/81 (428)
o for 0r) O '

which leads by integration to an improved bound on E(fg):

(4.29)

3/4—9s/4
90R>

E(r) — E(6or) < C <9R

Using this bound again in (4.26), we can further improve (4.29) and after a finite number of such steps,
the power of (Ar/0gr) decreases enough so that we can state:

E(0r) < const (4.30)

for all fr in the time interval (%7, 9).

4.6. The interval (7,7 /2)

This time integration of (4.26) leads directly to the desired bound:
1 1

>
VE@Or) ~ /E(0r(=7))

we can always choose € so small that the right hand side be positive 2. This leads then to an upper
bound on E(fr) and thus on F(7/2), as announced.

—2C(k(0r(e?)) — k(Or)) (4.31)

capital C denotes a constant which needs not be specified in more detail
2the value E(Ar(c?)) is independent of ¢, if ¢ is sufficiently small, according to paragraph 4.5
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4.7. Summary

The important point concerning the bounds which were established above is that they are independent
of e, provided only ¢ is sufficiently small. We can now review the qualitative argument for Theorem
4.1 given in paragraph 4.2, whose gaps have now been filled in. As we have seen all solutions reach
at some time n7/2 the interior of a rectangle I of size Ke“*™/* around the reference solution '3 for
a certain constant K. If there are invariant sets, they are contained in this rectangle for all times
mr/2,m = —oo..00. If Ckm/4 > 3/16 — kw/2 = « then the argument of paragraph 4.2 shows that
those solutions that are in D at, say, t = —m/2, are contained at ¢ = m/2 in the rectangle Dy of size
Myerm/2+3/16 " oq.(4.3) which proves Theorem 4.1 for this situation. If the inequality is not satisfied,
we may find a constant Mj so that the solutions are contained at ¢ = 7/2 in a rectangle D; of size
Mye®(m+C7/4) "as argued in paragraph 4.2. If x(C7/4 + ) > g, then the solutions reach at t = 37 /2
the interior of Dy and the proof stops at this stage. If not, we find My and a rectangle Dy of size
Moe™(Cm/4427) g6 that the solutions are contained in it at ¢ = 3w /2. After a finite number of steps ,
the bound ag will be overcome and this ends the proof of Theorem 4.1.

Independently of the existence of invariant sets, the arguments of this section lead to the following:

Corollary 4.1 Consider the solutions vr(t) starting at t = —n/2 in the rectangle (4.3) of Theorem
4.1 and the corresponding functions wr(0), wr(0) defined in (4.7) and (4.12). There exists then a
constant M, indepedent of € if € is sufficiently small, so that

dwr, r
dor.r

<M (4.32)

lwr, r(OL,R)|, '

for t(0p.g) in (—m/2, —10e%®) and (10e3/37/2) in turn.

This remark is used in the next sections to justify the averaging procedures employed there (see Arnold
[1978, §52]).

5. The Left Hand Side Poincaré Map

5.1. The left hand quarter period map

In this and the next section we derive approximations to the half period Poincaré map Py, restricted
to the rectangle (4.3) of Theorem 4.1. We consider first the quarter period Poincaré map:

PL: (wn(~/2), SE(—/2) = (010), T (0)) (5.1)

" der,
where 7 is the "‘boundary layer" time variable introduced in Section 1, eq.(1.18),0z is defined in
eq.(4.2) and vy, is a solution of eqn.(4.1) for —7/2 < t < 0. Note:in this section we shall drop the
index "L"" on the variable 6 because O, eq.(4.2),used for t > 0, does not appear at all. Also, for ease
of notation, we write g(0) = gr(6) of (4.10). Instead of the rectangle eq.(4.3) we may consider a disk
of the same magnitude and parametrize:

vp(—7/2) = e3/16FRT/2 A cos W

dvr,

db

With the change of dependent variables (4.7), we are led to eq.(4.8) where now a = 3/16 + k7 /2.
The function h(@) of (4.9) is O(3/16+57/2) at t = —71/2 and O(¢"") at t = O(¢/®). In an interval

(—m/2) = —e3/16FRT/2 A 6in W, (5.2)

13if the variable 01, r is used for the time
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I, = (—C.,—1e%?®), where C. — 0 when ¢ — 0, we can set sint ~ t, so that eq.(4.2) implies
t =~ —&%/8(—0)3/*, and it follows that, for |7| sufficiently large:

33/2
0=

(5.3)

ghilt+m/2) ok /243/16 o —0o 3/8
h( = ~ _9 ?

(_XL)3/2 —p

For'* €3/ = 0.003, Fig.3 shows the appearance of h(t); in the range of values of & of interest (see
below), the function g(t) is much smaller than h(t) (at t = —10 x %/ it is ~ 8.5 x 1075).

htheta,eps=0.19E~6)

Figure 3: The function k() for relevant values of the parameter

5.2. The interval (—7/2, _53/876)

The influence of the nonlinear terms of (4.8) can be analyzed due to the smallness of the function
h(f) in a manner inspired by and related to the averaging method of Bogolyubov and Mitropol-
sky|1961|(especially chapter V of this reference). We use new dependent variables R(#) and ¢(6):

wr,(0) = R(0) cos(60 — Oy + ¢(0)) (5.4a)
%L — _R(0)sin(0 — 6 + (0)) (5.4b)

which transform (4.8) into the pair of equations:

O Lo(0)R()sin(22) — Lh(O)R(6)2(sin = + sin(32)) -
+ %h(9)2R(9)3(sin(2z) + %sin(élz))

o 1 1

— = —g(0)(1 +cos(2z)) — =h(0)R(0)(3 cos z + cos(3z

70 = 2901+ 3( )= ()1()( + cos(3z)) (5.5b)
+ h(9)2R(0)2(§ + 2cos(22) + 3 cos(4z))

with
2(0) = 0— 0y + 6(0) (5.6)

According to section 4.1, the function R(€) is bounded independently of € for 6 corresponding to ¢ in
an interval (—m/2, —79e%/8). Due to the smallness of h(f) and g(f), we expect both R(#) and ¢(6)
to have a slow variation compared to ; one might be tempted to replace eqgs.(5.5a),(5.5b) with their

1The quantity £3/% measures the width of the boundary layer; it corresponds to ¢ = 0.187 x 10~°
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averages with respect to 6 (or with respect to z). The fact that k() is not integrable forbids however
this simple averaging '°. Following Bogolyubov & Mitropolski [1961], we perform a transformation of
the dependent variables to new variables by:

Ri(60) = R(0) — ih(&)R(O)z(cosz + écos(Sz)) (5.72)
61(0) = 6(0) + ih(&)R(H)(Ssinz + %sm(?)z)) (5.7b)

The jacobian of this transformation is 1+ O(h) so that the transformation is locally invertible if ¢ and
thus h(#), are small enough. From the boundedness of R(6) established in Section 4.1 it follows that
R1(0) is also bounded, independently of €. Moreover, one can show that the transformation (5.7a),
(5.7b) is in fact invertible at fixed 6 on its domain of values in the (R, ¢) plane if h(#) is sufficiently
small. This question is discussed in Appendix B. The change of variables (5.7a),(5.7b) "‘removes"’ the
terms of O(h) in eqns.(5.5a),(5.5b): the equations for Ry (0), ¢1(0) read:

dPleg(Q) _ %R(Q)g(e) sin(2z) + R(H)Sh(9)2[£ sin(2z) + % sin(4z) (5.82)
- % sin(62)] + O(h*, hy, ZZ)
dﬁf’;(g‘)) = S0(0)(1 + cos(22)) + R(6Yh(6)?[~ o - = cos(22) (5.8b)
. 1 dh '
-5 cos(4z) — = cos(62)] + O(h?, hy, @)

In these equations it is understood that R(6),¢(6) are replaced by functions of R;(#),¢1(#) obtained
by the inversion of eqns.(5.7a),(5.7b). To first order in h(#) the latter reads:

R(0) = Ry (0) + %h(@)Rl(H)Q(cos o+ %005(321)) +O(h?) (5.92)
o(0) = ¢1(0) — %h(G)Rl(G)(S sin 21 + %sin(Szl)) + O(h2) (5.9b)

with
z1=0—0p+ ¢1(0) (5.10)

Since h(0)? ~ £27(6y/0)%/* is again not integrable, one cannot draw directly conclusions about the
behaviour of Ry(#) and ¢1(#) over large intervals of §. An attempt to remove the terms in h(0)? can
achieve this only partially: the equation for ¢1(6) contains to orders h(#)? and g(#) "‘secular" terms,
i.e. terms which have nonzero average and which cannot be removed by a further transformation. It
is relevant to notice that, in order to remove terms of higher order in eqns. (5.8a),(5.8b), one does not
need to resort to the explicit inversion, eqns(5.9a),(5.9b), but regard R(R1,$1), ¢(R1,¢1) as known
functions of 6, whose derivatives are given by (5.5a),(5.5b). With this, we introduce new variables
R, ¢2 by:

19 1 1
Ry =R, + R(0)3h(9)2(@ cos(2z) + 18 cos(4z) — 103 cos(62)) (5.11a)
b2 = d1 + R(@)%(&)Q(% sin(22) + % sin(42) + %8 sin 62) (5.11D)

As follows from Appendix B, this transformation is invertible under the same conditions as the one of
eqns.(5.7a), (5.7b). Using (5.9a)(5.9b) for R(6), (), it is true that:

Ry = Ry + O(h?) ¢1 = ¢o + O(h?) (5.12)

15as will be apparent the corrections may not be finite
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Use of (5.5a),(5.5b) for dR/df, d¢/df and of (5.8a),(5.8b) for dR;/d0, d¢i/df leads to:

dRy(0) _ 1 : 5 dh
7R §g(9)R(9) sin(2z) + O(h?, @,gh) (5.13a)
dpo(0) 7 9 m2 , 9(0) 1 3 dh
0 —24R(0) h(6)* + 5 + 29(9) cos(2z) + O(h ,dg,gh) (5.13b)
It is convenient to perform a further transformation:
1 1
R3 = Ry + ZgR cos(2z) 3 = P — 17 sin(2z) (5.14)

which removes the "‘nonsecular"’ terms in g(#) in (5.13a), (5.13b). This transformation brings addi-
tional terms in the equations corresponding to (5.13a),(5.13b), proportional to dg/df and g(6)?. The
former is dominant and, when its absolute value is integrated, leads to a term of O(g(#)). Now

9(—7’083/8)
/ h(0)3d0 = O (324116 ) 1n(1 /¢))
o(—7/2)

and vanishes as € — 0 so that we conclude from eqns.(5.13a),(5.13b),(5.14) that:
0

R3(0) = R3o + O(/ h(01)3dOr) + O(g(h)) (5.15a)
0(—/2)
7 [? 1 /?
#3(0) = P30 — = R(61)*h(01)%dor + / g(0r)dor
24 Jo(—r/2) 2 Jo(—x/2)
, (5.15b)
- O(/ h(61)3d6r) + O(g(6))
0(—m/2)
where Rsp, ¢30 are transformations of the initial conditions at t = —n/2 in (5.2). If, recalling

(5.92),(5.9b),(5.12) we invert the transformations (5.11a),(5.11b) and (5.7a), (5.7b) we obtain, using
the notations in (5.2):

6
R(O)=A+0 ( / h(91)3d9/> +0(g(8)) + O(h(8)) (5.16a)
0(—7/2)
7 0 1 0
o) =Ty — — R3,h(0r)%dor + / g(0ndor
24 Jo(—n/2) 2 Jo(—n/2)
, (5.16b)
+0 ( / h(9/)3d9/> +0(g(8)) + O(h(8))
0(-m/2)
In eq.(5.16a) we see that, up to possible oscillations of O(h(0)), R(f) stays constant at its initial value
at t = —7/2 down to t = O(3/879) where the second term containing ¢(f) may become relevant.
Evaluation of the integral in the first term of (5.16b) leads to:
7 0(—T0e3/8) chm
;= —— 2 240 = 1

As it will become apparent, bifurcations occur when %7 /41/% = O(1) so that this contribution to the
phase due to nonlinear terms (these contain h(f)) is important: it decays indeed like 1/(In(1/¢))?/3,
but this is very slow. The bounded function of x and e which multiplies the term under the O()
sign has a nontrivial behaviour and is shown in Fig.4;the magnitude of the phase variation implied by
(5.16b) depends on the value of &, i.e. of the damping: at £¥/® = 0.003, for x = 0.04 and A = 1 it is
0.46 rad, but at x = 0.02 it measures 2.01 rad. The second term in (5.16b) is related to the linear part
of (4.8) and brings a constant contribution at t = —7pe%®. We conclude this discussion by stating:
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I(k.eps)

Figure 4: The dependence on ¢ of the factor multiplying the O() term in (5.17)

Lemma 5.1 The solution of (5.4a),(5.4b) with the initial conditions R(—7/2) = A, ¢(—7/2) = Vg is
given by eqns.(5.16a), (5.16b) for t in (—m /2, —1pe®/8).

In eq.(5.16a),(5.16b), the terms containing g(6) originate in the linear part of eq.(4.8): we expect thus
that if we solve the linear part of (4.8) (for a function wr,(6)):

22, (0
1;};2( ) | wr(0)(1+ g(6)) =0 (5.18)
with the initial conditions:
B (0(—7/2)) = Acos(To + &1), %L(e(_wm) — _Asin(g + @y) (5.19)

with @, of (5.17) we obtain for ¢ close to —7pe®/® values which differ to O(h) from those of the complete
equation. With other words, the only effect of the nonlinear terms in (4.8) is the addition of a phase &,
to the simple harmonic evolution. For clarity, we do not expect that the solution of (5.18) with condition
(5.19) approximates the solution of (4.8) over the whole interval (—7/2, —10%/8); only the values near
t = —70e3/® are presumably well approximated. To render this precise, we analyze (5.18) using the same
transformations (5.4a),(5.4b) to new variables - called R, - which obey equations like (5.5a),(5.5b)
with h() = 0. Performing the change of variables (5.14) leads in analogy to (5.16a),(5.16b) to:

- - 1 [
Ri(B)=A+0(s0),  $1(6) = Vo + @1+ / O OGO (520)
0(—m/2
Comparison with (5.16a),(5.16b) shows that:
0
IR(0) — R(6)] = O(g(8)) + O(h(6)) + O / h(61)3d6r) (5.21a)
0(—m/2)
_ 0
[6(0) — ¢(0)| = 0(/ h(0r)>der) + O(g(6)) + O(h(0))
o) (5.21b)
7 [—0(10e%/®) A2h(01 0
=+ ﬂ y h( /) dor
If 0 is sufficiently close to 6y = 9(—7053/8), e.g. corresponding to t = —&3/879 for § sufficiently small,

but nonzero, then all terms on the right hand side behave like positive powers of €. As is easily
verified, using (5.3) and (4.10), these are (up to logarithmic terms) in (5.21b): g3#7/2+1/16  -83/3
ghm+0/2  g26m=0/3 in turn. There is some freedom in the choice of d: a simple choice is § = 3km/8
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where the O(g(#)) term is dominant and the differences (5.21a),(5.21b) are of O(¢"™) .If & is large, this
choice becomes inappropriate: if e.g. km > 1, the 7-time interval of O(E*‘s) is with this choice larger
than the damping time 1/v. We are interested in 7-intervals slightly larger than the O(1) scale but
much smaller than ¢=3/8. We write (with some arbitrariness)

5= r = min(sr, %) (5.22)

With this, for 7(6) < e

de(G) _ dﬁ}L(G)
do do

jwr(0) —wr(0)l, | | =0(") (5.23)
Now, the variational equation around the reference solution X (t) to the Duffing equation (3.1)
(or(1.8)) reads:
NPT (125, =0 (5.24)
—_— v = .
a M LA oL

With the same Liouville transformation (4.7) we may write for its solution :

=~ t)en(t+7r/2)
(1) = ern/2es6 DL T 5.25
or(t) =¢ CX, ) (5.29)
where wp(t(A)) obeys (5.18) with initial conditons (5.19). Since Xp(t) ~ —t'/3, one verifies from
(5.25) that, for t ~ £3/879 both vy, (t) and 01 (t) are of O(e#+1/8+9/6) It is convenient to revert to the
"“time"’ 7 and to variables ur(7) and ar(7) used in the boundary layer region with the scaling (1.18):

ur(r) = e Y8(t), ar(r) = e V8L(b), t =387 (5.26)

Since for small t, § ~ —7%3 both duy/dr, diiy,/dr are of O(e""=%/0) at t = —3/37% Using (5.23), we
conclude that, for such values of ¢ (1 = ¢7°):

ur(r) — ()| = O ), | WLy ULy perrir-are) (5.27)

The above is summarized in the statement of

Lemma 5.2 The solutions vy,,eqn.(4.7), of eqn.(4.8) with the initial conditions (5.2) are approximated
together with their derivatives at t = —e®/8=% by the solutions of the variational equation (5.24) with

the initial conditions:
op(—7/2) = e3/16FRT/2 N cos(Wg + Br)

%(_F/Q) = —3/16FRT/2 A 6in(Wg + B ) (5.28)

and ®p, of (5.17) according to the estimates (5.27) with the definitions (5.26), (5.22).

From eqn.(5.25) one sees that (5.28) is only a reformulation of (5.19).
Using the estimates (5.20) and neglecting the contribution of the integral over g() we can write
uniform approximations 9, () to two special solutions @ s(#) of the variational equation (5.24) on the

c,s
interval (—m/2, —£%/879):

cRlt+T/2)

1/2 {cos/sin} (0 — O(—m/2)). (5.29)

W .
vc/s<6) - (—XL(t)>
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These solutions (and their approximants) obey: 0.(6(—7/2)) = 1, 05(0(—n/2)) = 0, dv./dO(0(—7/2)) =
O(eln(1/e)), dvs(6)/dO(0(—n/2)) = 1. Comparing with (4.2) one recognizes in (5.29) the "“WKB ap-
proximations" to solutions of eq.(5.24). At 7 = —& 7%, |Xp(t)| = /8713 = £1/8-9/3 and eq.(5.20)
shows that:

(B — ) = 0)] = /20167116 5 ( /
0(=7/2)

where we used g(6) ~ 1/6? (cf.(4.10)) and (5.22). The same quality of approximation holds for dd..s/df,

e—48/3

g(@)d@) _ O(Efwr/2+r/2+5/6—1/16) (5_30)

but for di. s/dT we obtain, in view of dr/df ~ 7=/3 = £%/3;
d{)cs df)cs KT r/2—6/6—
| dT’ _ d77 | = O(eh™/2H7/2-6/6-1/16) (5.31)

With the help of (5.29) a uniform approximation on [—m/2, —79] of the solution of (5.24) with the
initial conditions (5.28) reads:
o (t) ~ oW () = A2 (W (0) cos(Wg + D) — 57 (0) sin(Tg + L))
A83/16+n7r/2
_ e KT /24t ol
(—XL(t))l/QE cos(0(t) — 0(—m/2) + Vo + ®1)

With (5.31),(5.32) it follows that, at 7 = —~%:

(5.32)

_ 0(61/8+f€7r+r/2—5/6) (5.33>

do;p  doW
e _ 1/8+km+7/2+5/6 ¢vL %YL
(o, = 5)(7)] = O(e ) \(d ar ><T>

5.3. The interval (—<3/57°0)

We notice that, while the "‘natural” order of magnitude for the boundary layer is £!/3(cf.eq.(1.18)),
ie. ur(r) = O(1), it turns out that, in fact, with the initial conditions (5.2), ur(7) is O(g""), i.e.
for small enough ¢ - as argued in Sec.4.2 - it becomes smaller than the discontinuity of the reference
solutions at ¢t = 0. We compare now the evolution in the interval (—£%/8-9,0) of the solutions of the
boundary layer equation with those of the variational equation around the reference solution X (t),
with the initial conditions (5.28). We introduce to this end "‘macroscopic"’ variables:

U(r) =¢e ""ur(r), U(r) = e " (r) (5.34)
U(r) satisfies :
d2U dUu 2 KTTT2 26myrT3
= + 275 + 3L (1)U + 3np(1)e"U* + £*""U° = 0 (5.35)

and U (7) is a solution of the linear part of (5.35). In (5.35), n.(7) = X (t)/e'/® and v is given in (1.18).
The solutions of (5.35) obeying initial conditions at 7 = —e~% may be estimated by transforming (5.35)
to an integral equation with the help of two independent solutions Uy (7),Ua(7) of the linear part. Using
the method of "‘the variation of the parameters"’, we obtain:

U(r) = A1UL(T) + A2Ua(7)

+/T <U1(T)U2V(I:8J_ g2§T)U1(T’)€HW(U2+€mU3)dT, (5.36)
_876 1’ 2

where A;, Ay are such that the values of U and dU/dr at 7 = —&79 are reproduced and W(Uy,Us) is
the wronskian of U; and Us. To discuss this equation, we need to know something about the solutions

of:
d2U dU
— +2y—— +3n(1)’U =0 (5.37)
dr dr
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for 7 in (—7%,0). Writing:

U(r) = exp(—y1)V (1) (5.38)
the equation for V(7) is:
d*V 9 9
2z +Bne(r)” =)V =0 (5.39)

In Appendix C we show we can choose two solutions of (5.39), called V. 4(,¢), which for large —7
assume the ""WKB"’ forms:

31/4 Ta
e {eos /sin} ( / =(r,¢)"2dr) (5.40)

(7€)

Vi) (re) =

c,s

where

2(7) = 3n.(7)% — 7% ~ 3nu(1,e)* ~ 3723 (5.41)

for 7 large and 7, is an arbitrary (finite, e-independent) value !¢ of 7. These solutions may be extended

down to 7 = 0 and have a well defined limit as ¢ — 0. Indeed, in (5.39) and (5.41) ni(7,¢) is given by
the inner expansion (3.9)(cf.eq.(3.34)). According to (3.9) and (3.11)(cf.eq.(3.34):

nL(r,€) = moor (1) (1 + O( 472, 7 /75/%) (5.42)

so that the limit as e — 0 of expressions (5.40)at any finite 7 is obtained by simply replacing (7, )
by noor(7). We can also pass to the limit in eq.(5.39) and one expects that its solutions tend to
the solutions of its limiting form defined correspondingly by the requirement (5.40). Appendix C
gives (straightforward) arguments for this. The solutions V. (7, ¢, 7,) defined by (5.40) multiplied by
exp(—y7) (cf.(5.38)) are chosen as Uy in (5.36). Clearly, the parameter 7, is arbitrary and should
drop out in the final expressions'”. One verifies that, with this choice:

W (Uy,Us) = exp(—2y7) = 1, T =0(e?) (5.43)

Denoting then:

(1) =U(r) — A1Ui(7) — A2Us(7) (5.44)
and using the fact that |Uy(7)], |Ua(7)] < M on (—£7%,0), for some M, we verify that the operator
given by the integral on the right hand side of (5.36) defined on the space of functions g(7) continuous
on [—£7%,0] endowed with the sup|(1+7/6)g(7)] norm maps a ball of radius const x £57~9/2 into itself
and is, at least for small enough € , a contraction, so that (5.36) admits of a unique solution there.
Thus, the solution of the complete equation (5.35) departs from the solution of its linear part with the
same initial conditions at 7 = —e~% by quantities of O(e"7~%/3) on [—£79,0]. For the derivatives one
obtains estimates of O("72%/3),

We still have to bound the evolution of the distance between two solutions of the linear equation
(5.37) whose values differ by O(¢"+%/%) and their derivatives by O(e"~9/6) at 7 = —e 9 (cf.eqns.(5.27)
and (5.22)).This is a direct application of (C.19) in Appendix C, from which one deduces:

dAU
dr

Recalling (5.34), we may summarize the foregoing by:

|AU (1 =0)], | (1=0)|=0(") (5.45)

Lemma 5.3 If a solution vy(t) = €'/%ur (1) of the Duffing equation (4.1) differs from a solution

op(t) = €Y% (t) of the variational equation around the reference solution X (t) att = €3/3=% according
to (5.27), then at t = 0:
d du
(ug = aL)(r = 0)] = O™ %), |(TF = ZE)(r = 0)] = O("™+7~2/%) (5.46)
T T

181t may be chosen as 7y of (4.2) but need not
"see Section 5.4
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(recall § = 3km/8).

It is useful to recall the "‘constitution"’ of the exponents of € in (5.46) which measure the order of
magnitude of the approximation: a factor e#™/2 originates in the initial conditions(5.28); a factor ghm/2
is a result of the damping; these two factors control the magnitude of both ur(7) and ar(7) in (5.46);
the remaining factor ”~%/3 (or e"~2%/3) states that the "‘macroscopic"’ quantities (5.34) are close to
each other at 7 = —¢ % as stated in (5.27) and that this distance may increase a little as we move

e "

from 7= —e % to T =0.

5.4. Summary of the quarter period map for < 0

The conclusion of section 5.3 is that to O(¢""t7=20/3) the Poincaré map Py, : (v, dvr/df(pi/2)) =
(ur,dur,/d7)(T = 0) is given by the solutions of the variational equation around the reference solution
X1,(t) with initial conditions (5.28), where (A, ¥y) are related to (v, dvr/d0(t = —n/2)) by (5.2) and
= is given by (5.41).We can write a more explicit form of Pp, using the combinations:

V. = 5"”/2_1/16(‘/0 cos(Q2(7,)) — Vssin(2(7,)))
Vi=¢

n7r/2—1/16(‘/c SiH(Q(Ta)) + Vi COS(Q(TQ))) (547)
with

Ta

Qra) = 0(7a) — 0(—7/2) ~ / =(r)Y2dr (5.48)
—7/(2e3/8)

They are chosen so that 51/817073 are equal at large 7 = —¢~° to the WKB approximation (5.29) to

the solutions ¥, s of the variational equation (5.24), defined by initial conditions at ¢t = —m/2 (see text

following eq.(5.29)). The combinations (5.47) are, when multiplied by exp(—v7), exact solutions of

(5.37). The expression:

Bar(t) =A1FTHT2(V, cos(Wg + @) — Ve sin(¥g + 1))

1/8 1/8 (5.49)
= A"V (W, cos(QU(ta) + Wo + Br) — Visin(Q(ry) + Vo + 81)) = /80q1,(1)

is a solution of the variational equation (5.24) which differs at 7 = —~? from the solution 9 (t) of
Lemma 5.2 as described in (5.33). With the same argument used in eq.(5.45) and in Appendix C, this
difference propagates down to 7 = 0: recalling the definitions of @ (¢) (cf.Lemma 5.3 and (5.46)) and
Uqr(t) (cfeq.(5.49)) then

duy, dﬂaL> (
— T

(- =0 (G2 - B ) (=) = o (5.50)

Thus, we can use the solution i,z (t), which involves the functions V. s defined by means of (5.40) and
having a well defined limit as ¢ — 0 (cf.(5.42), to express the left hand side Poincaré mapping P, in a
simpler form: taking (5.46) and (5.50) into account:

Jur(7) = Gar(7)| < [ur(7) = AL (r)] + [ar(7) = Gar(7)] = O 708, " TH/2) = O("7+7/2) (5.51)
and a similar estimate for the derivative; we can then state:
Theorem 5.1 The quarter period Poincaré map Pr, : (A, V) = (up,dur/dr(r = 0)) is given by:
ur,(0) = A" ((Vo(0, e, 7a) cos(¥ + &y, + Q(74)) — Vi(0, e, 70) sin(¥ + @1, + Q7)) + O(e"/?)) (5.52a)
0) = A (Do (0,2 7) cos(U + By, + Q7))

dr
v | » (5.52b)
~ = (0,e,74) sin(¥ + @1, + Q(7,)) + O(e"7#))

dur,
dr
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Figure 5: The image of the disk A = 1 under Pr, with the rays ¥ = nr/4

Recalling the definition (5.17) of ®7, eqns.(5.52a),(5.52b) show that circles of radius Ae3/16+57/2 in
the (vp(—7/2),dvr/dO(—7/2)) plane are mapped onto ellipses in the (uz(0), dur/d7(0)) plane, with
a A—dependent phase ®;, (see Fig.5). Thus the disk A < const undergoes under Py, a torsion. All
quantities in (5.52a),(5.52b) may be obtained from a numerical solution of the variational equation
only in an interval near ¢t = 0: it is enough to find - for a given choice of 7, - the solutions V. (7, ¢, 74)
obeying the boundary condition given by (5.40) at some large 7 = ¢~°- and extend numerically the
solution down to 7 = 0. One may object that the mapping seems to depend on an arbitrary parameter
Tq: this is, however, not the case. The reason is that in the form (5.32) of the solutions at large T,

the parameter 7, does not appear at all. It is thus absent in the solutions V, s of (5.47) which match
(5.29) at 7 = —e7%. The rotations (5.47) which depend on 7, leave the sums

2 2
A% = V.(0,e,70)% + V5(0,e,74)?, B? = (ch> (0,e,74) + (st) (0,e,74)
dr dr
invariant. Further, the angle x between the vectors (V, V) and (dV./drt,dV,/dr) is also invariant.
The image of the circle A = const under Py, is
2 2
% + (duLB/jT) — QUL(ng/dT) cosy = A?sin® y

It depends only on these three quantities, so that the independence of Pj, on 7, is apparent. Moreover,
the quantities V. 4(0,e,7,) and their derivatives have a limit as ¢ — 0, according to the remarks
surrounding (5.42) and to the discussion of Appendix C. In numerical calculations we choose 7, =
-10:at this value we can approximate : 7(7) ~ sin(re%/®)1/3 /e1/8_ The limiting values for £ = 0 of the
constants in (5.52a),(5.52b) are found to be:

dVe
‘/C(O,O,Ta = _].0) ~ —1.163 ?(0,0,Ta = —10) ~ —0.178
dVs
Val0,0,7 = —10 &~ ~0.0876  =(0,0,7, = ~10) ~ ~1.5086 (5.53)
T

Then:
A =1.1659, B =1.5191, X = 78.960°

6. The Right Hand Side Poincaré Map

6.1. The continuation of the reference solution X; tot > (

As one sees in Fig.4, the continuation of Xy, to t > 0 traverses first the x-axis and then approaches the
reference solution Xg as t increases, oscillating around it. We describe in the following this behaviour

31



in more detail.

etaL

-10 / 10 20 30

tau

Figure 6: The continuation of the reference solution 7y, (7) = X1(7)/e"/8 to t > 0

The interval 0 < t < 1pe3/8

The initial values of the solution X, at 7 = 0 are ('/81,,(0),"/3dny, /dr(0)) ~ '/8(—0.677, 0.472). In
the limit € — 0, the boundary layer equation

d®n |
=7 6.1
a2 1 (6.1)
admits of the symmetry 7 — —7,17 — —n; as a consequence, it is true that nz(7) = —ng(—7), where

nr,mr are the solutions behaving like -71/3, 71/3 as 7 — —o00,00 in turn. Therefore, in this limit,
nr(0) = —nr(0),dng/dr(0) = dnr/dr(0) (cf.Section 3.3). For ¢ > 0 (and any ¢ > 0), we denote
An(t,e) = nr — ng; it obeys the equation:

d*An
dr?

dA
+ 29" 4 3nfAn + 3na(An) + (An)* = 0 (6.2)

With the same argument as in Sect.4.1, eqn.(4.21) we verify that the energy associated with (6.2):

_ 1, dAny2 3 4 2 3 (An)*
E(r) = 5 (=) +5mk(An)° + nr(An)” + = (6.3)
obeys (if £ > 1) the inequality:
B < com;taln—RE?’/4 (6.4)
dr dr

from which one concludes that F(7) and thus An(r) are bounded at t = 79¢3/8. Clearly, the same is

true for all solutions starting in a disk of radius €*™ (or of any finite radius) around (An(0), dAn/dr(0)).
Here 79 is a time in the boundary layer region (typically 79 = 10)

The interval 7¢*/® < t < 1 /2

As in Sections 4.1 and 5.1 we write for AX(t)) = An(t)e!/3:

wr,r(OR) .
AX(t) = %5 t+3/16 (6.5)
XR
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with O given in eq.(4.2). Note:In the rest of this section we shall drop the subscript "‘R"’ on O since
it is clear that we confine ourselves to the time interval [0,7/2]. The subscript "‘L"’ is appended to
quantities related to the continuation to t > 0 of the left hand reference solution X (t) or to departures
from it

The function wy, obeys :

d2w B _ 1 ~
g LR+ 9(0)) + K(O)@E g+ k(00 5 = 0 (6.6)
where (cf.(4.14)) o
€ Kk exp(—vT)
kO) =35 =—3p (6.7)
XR Nr

Xg(t) = /8ngr(t(A)) and g(h) is given in (4.8) with the interchange —X «+ Xp As in Section 5.2, we
move over to polar coordinates:

UNJLJ{ = RL(H) COS(H + ¢L(9)) (6.8&)
di’l’;ﬂ = —Rpsin(0 + ¢, (6)) (6.8Db)

and obtain equations completely analogous to (5.5a),(5.5b) with the change h — —k:

dRy _ gO)RL(0) . . KO)FL(0)
i B LG R

@ = @ 1+ cos2z —i—lk 0)Ry,(0)(3 cos z + cos 32) + k(0)2 R (0)? §—1—20052z—&—10034z 6.9b
do 2 4 2 2

with z = 6 + ¢1(0).We imitate now the arguments of Sect.5 concerning averaging and "‘remove"
first the terms in k(€) in (6.9a), (6.9b) by a transformation of the dependent variables similar to
egs.(5.7a), (5.7b). One has to realize that, although the equations are similar to those of the previous
section, the function k() is of O(1) when t is of O(%/®), in opposition to h(#) which is of O(e")
(cf.eq.(5.3)).However, it is monotonically decreasing with 6 and arbitrarily small for large 6. According
to Appendix B, the inversion of the transformations (5.7a), (5.7b) at fixed 7 > 7 is possible if 7j is
sufficiently large.

We obtain a set of equations for the functions Ry 1, ¢1 1, very similar to eqns.(5.8a), (5.8b). The initial
conditions at 7y are different to O(1) from those for Ry (6), ¢10 in (6.9a), (6.9b). The boundedness of
the solutions of these equations is not immediately apparent since k(8)2 ~ (6p/6)>/* is not integrable
(clearly, the integral over k()2 is finite for finite e but diverges as ¢ — 0). We perform thus a
second transformation, similar to (5.11a),(5.11b), which separates off a term (—7/24)Rp(0)?k(6)?) in
the equation for ¢ 1,(6).

We denote:

2 3 a3
k(0) 1]ZL(«9) (sin 27 + sin4z

(sinz + sin 3z) + ) (6.9a)

7 0
O p(0)=—— | Rp(0)*k(6)%do (6.10)
’ 24 Jo,
Contrary to the phase ®;, of eqn.(5.17), whose magnitude depends on the ratio %7 /y/3, the value at
6(m/2) of the additional phase ®1, r(#), eq.(6.10), appearing for t>>0 in the oscillations of the extension
of X, (t) around Xp(t) is truly divergent as ¢ vanishes. Using the estimate :

2 .
—t <sint < t, 0<t<m/2
T
one verifies that:
/2 do 1 °° exp(—2u)du
k(0)>=dt ~ : =0y 13 6.11
/7.053/8 ( ) dt cl/8,k1/3 1111/3(1/5) /0 u2/3 (’7 ) ( )
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As in Section 5.2 it turns out that dRp/df is very small for large 6 and thus we expect Rp(6) to
approach there a constant value Ry, y = R (t(6) = m/2). If this value is nonzero, the additional phase
O, R is indeed divergent as ¢ — 0. Now, the function X, (¢) (and thus 77(6)) still depends on the
value of ¢; so do the corresponding values Ry, r, for which we write for clarity Ry, ¢(e). In Appendix D
we show

Lemma 6.1 As e — 0, the values Ry, f(¢) tend to a limit Ry, £(0). This limit is obtained by solving
eqns.(5.13a), (5.13b) with —h(8) replaced by k(0), eq.(6.7) where nr(0,¢) is replaced by noor(7(6)) of
(8.24a) and v is set equal to zero.

For v = 0 we obtain in (6.7) k(0) = 1/nr(0)*/? ~ 1/7(6)"/?. A numerical evaluation leads to R(0) =
0.84 . If we accept this as a "‘proof"’ that R¢(0) # 0, we can state

Lemma 6.2 The value of the secular term ®p p(0) at O(t = 7/2) is O(y~1/3).

We define the "‘rest phase'’ left after the removal of the secular term as:

éL(0) = oL(0) — L r(Y) (6.12)

This "‘rest phase"’ is also e-dependent (so that we should write ¢, -(6)), however, in a "‘harmless"’

manner:let ¢y -(t(0) = 7/2) = ¢, s(). With the same argument leading to Lemma 6.1 we show in
Appendix D

Lemma 6.3 As ¢ — 0, the values qBL,f(s) tend to a limit <13L7f(0).Thi5 limit is obtained by solving
eqns.(5.13a),(5.18b) with —h(0) changed to k(6) of (6.7) with the same replacements as in Lemma 6.1.

To conclude,taking (6.5) into account, the continuation of X (t) to t > 0 oscillates around the reference
solution Xx(t); the departure from Xp reaches the value 0.84e"™/2+3/16 at t = 7/2; as follows from
the definition (4.2) of the variable g, the number of oscillations with frequency proportional to Xg(t)
increases indefinitely as € — 0 and there is an additional phase, which also increases indefinitely in
this limit, as shown by equation(6.11).

6.2. The variational equation around X (t) fort >0

In Section 5 we have seen that all those solutions of Duffing’s equation which start at t = —7/2
in a disk of radius Ae"™/2+3/16 around the left hand side reference solution X7, (¢) land in a disk of
radius €7 around the values (11,(0),dnz/d7(0)) (cf.Section 5.4, eqn.(5.52a), (5.52b); their departure
from X (t) = /3. (7) is denoted there by e'/8uy (7). For t > 0, we consider the departures from

Xg(t) = e'nr(7):

ur(T) = ur(r) + no(7) = nr(7) = ur(r) + An(7) (6.13)
with An(7) of (6.2) In analogy to eqn.(6.5), we write :
un(0) = L0 (6.14)
R

and define R(0), #(#) in analogy to eqns.(6.8a), (6.8b):

w(f) = Rcos(8 + ¢) (6.15a)
dw .
5= —Rsin(0 + ¢) (6.15b)
The right hand side Poincaré map around Xg(t) may then be written
duR
Pr: { ur(0), ——(0) | = (R(t(0) = 7/2), ¢(t(6) = 7/2)) (6.16)
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Since we are interested only in a small neighbourhood of the point (An(0), dAn/dr(0)) =~ (21n1(0),0),
we expand the Poincaré map in a Taylor series around it:(¢r, ¢(e) = ¢r(t(0) = 7/2,¢),cf.eq.(6.8D))

Pr(ur(0), dur/dr(0)) = (RL (), br.(c))+

(6.17)
DPg(An(0).dAn/dr(0))(ur (0), dug /dr(0) + .

where (ur,(0),dur,/d7(0)) is, according to eqn.(5.52a),(5.52b), O(e"™). We write the mapping Pr as a
composition of three transformations:

Pr =PsoT o P (6.18)
given by:
P; : (ur(0),dur/dr(0)) = (ur(70), dug/dT(10)) (6.19a)
T : (ur(70), dugr/dr(10)) = (R(0(10)), 9(0(10))) (6.19b)
Pe 0 (R(0(n0)),¢(0(m0))) = (R(O(t = 7/2)), p(0(t = 7/2))) (6.19¢)

where 79 is a "‘time"’ in the boundary layer already introduced in Section 6.1 following eq.(6.4); it is

for convenience also chosen as origin of the variable 0g, eq.(4.2). Corresponding to the composition
(6.18) we write for the derivative:

DPr(An(0), dAn/dr(0)) = DPg(RL(70), ¢1(10)) e DT(An(70), dAn/dr(70))

o DP;(An(0), dAn/dr(0)) (6.20)

The elements of the jacobian matrices appearing in (6.20) are the values of solutions of the variational
equation around X (¢) for ¢ > 0 at 79 and ¢t = 7/2 with appropriate initial conditions. We evaluate
next these elements.

The interval 0 < t < 19e3/8

The variational equation around Xy () reads:

2

% - 27%“ +3np(7)%0u =0 (6.21)
On the bounded interval 0 < 7 < 73 this equation has bounded solutions; moreover, as € — 0, these
solutions tend uniformly to those of the equation obtained by letting formally ¢ = 0 in (6.21).This
means setting v = 0 in (6.21) and replacing 1z, (7) by the continuation to ¢ > 0 of the first term ooz (7)
in the expansion (3.34).

The rapid oscillations of nr(7) for 7 > 0 (see Fig.6) lead to solutions of eq.(6.21) with a more
complicated behaviour than those on the L.h.s.!®. Whereas the image at 7 = 0 of the circle A = 1 at
t = —7/2 is a (torsioned) ellipse (see Fig.5), the deformation of the latter under the flow for 7 > 0 is
considerable ,see Fig.7, which shows the image of the (approximate) ellipse at 7 = 0 (crosses) at times
7 =3 (boxes) and 7 = 10 (diamond) for values of €%/ = 0.003, x = 0.04. The origin is now chosen at

(nr(0), dng/dr(0)).

'8the corrections to the WKB formulae are determined by the function g(6) (analog of eq.(4.10)) which contains the
first and second derivatives of the rapidly oscillating 7z (7)
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Figure 7: The deformation of the domain in Fig.5 at small 7 > 0

The transformation T

With the help of eqn.(6.14) and the definition of the variable g, one verifies that the jacobian of the
transformation: p p
UR w
T1: — = —
(ur, S0 () = (a0, ) ()
is: ]
detDT; = 7 exp(—y70)
All elements of DTy are continuous at € = 0. The supplementary transformation'? T2 : (w,dw/df) =
(R, ¢) given by eqns.(6.15a),(6.15b) has a jacobian equal to —1/R(7p); we take it as numerically
established that R(7p) # 0; it tends to a nonzero value Ry(1) as € — 0.

The interval Tpe®/® <t < /2

The jacobian matrix DP¢ is more complicated: it contains elements which diverge as € — 0: the reason
is that the contribution coming from the variation of the term ®j r of (6.10) (see Lemma 6.2) is
divergent in this limit. It is thus convenient to study first a "‘reduced"’ transformation:

P : (R, 9)(10) = (R, ¢)(t = 7/2) (6.22)

where ¢ is the "‘rest phase"’ defined for each solution in analogy to (6.12),by subtraction of the
"secular"’ term. To this transformation we associate the jacobian matrix DPg.. Concerning it, we
show:

Lemma 6.4 The matriz elements of DPg. are bounded and continuous with respect to € as € — 0.

Proof. The proof is similar to the one in Appendix D and is based on a qualitative study of the
solutions of the variational equation around the solutions Rar, o, ¢ar0 of eqns.(D.4a), (D.4b) and of
the solutions R4y ¢, ¢ar . of (D.6a), (D.6b), in turn . According to the choice of initial conditions,
these solutions, denoted in the following generally by 0 R(0),d¢(6),may be identified with the partial
derivatives OR(6)/0Ry, 0¢(0)/0Ry (if dR(0) = 1,0¢(0) = 0) or OR(0)/0pg, 0p(0)/d¢y (if R(0) =
0,6¢(0) = 1), where Ry, ¢ are the initial values at 6(7p) = 0.

PP =—Ty0oT,
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The proof consists of three steps: (i)we show that, if € is set formally to zero, then the solutions
(SR%)(0), (64°)(0) (in the latter the "‘secular term "* has been removed, see (6.33) below) of the
variational equation around Xro = 9oz (7)e"/® approach a limit as 7 increases indefinitely; (ii)For
finite € we show that, if 7 > =%, for some o < 3/8, the solutions (§R)(8), (6¢)(0) differ by arbitrarily
small amounts from their values at ¢t = /2, provided ¢ is appropriately small;(iii) We show that,
for an interval of values of 7,79 < 7 < ¢ ?, with 3/8 > [ > a, the difference between the solutions
SR°(6),04°(0) (corresponding to ¢ = 0) and §R(f),56(6) (corresponding to a finite £) may be made
as small as we wish, by letting € be appropriately small.

In proving (i), we append for clarity to all variables related to the variational equation a superscript
"Q" recalling that € is set equal to zero. We assume we have "‘removed"’ by successive transformations
of the dependent variables the terms of O((k°)?) and O(dk®/df),(k°(6) = 1/190(6)*/?) and consider
first the variational equation around the solutions Ray, o, ¢ar,0(eqns.(D.4a),(D.4b)):

d(0RY)
do

— k2(6)* Re,0(6)* Py (20) (5R")(8) + K°(8)* Ru,0(6)° Pa(20)(56")(0) + ... (6.232)

dsey 7

T = B0 R o(0)%) + K(0) e 0(0)°Q: (20) SR 0)
+ K0 RL0(6)" Qa(20)(66°) (0) + .

where P 2, Q12 are trigonometric polynomials of zo = 6 + ¢ and the dots stay for terms which fall
off more rapidly with 6. Tt is relevant that the polynomials P;(20), P2(20), @2(20) have zero mean
whereas Q1(z0) contains a constant ("‘secular"’) term. From the form of the transformations leading
from Ry, ¢r0 to Rar0, Parpo (cfeqs(5.7a),(5.7b), (5.9a), (5.9b), (5.11a),(5.11b)) we see that:

(6.23b)

SRY(0) = 0RY(0)(1 + O(K°(8))) + 5¢3(0)O(k°(0)) (6.24a)

56°(6) = SRYO)O(K(9)) + 563(6) (1 + O(K(9)) (6.24b)

In (6.24a), (6.24b) the terms denoted by O(k°) may be read off (5.9a),(5.9b) : they contain trigono-
metric polynomials with zero mean. It follows that the variation of the secular term in (6.23b) is

5(K°(0)°Rr0(6)%) = 2k°(0)* R 0(0)R1(6) + (O(k°(6)*)565(6) (6.25)

These terms also give the leading order (the terms with the slowest falloff in ) of the coefficients of
SRY(6), §¢3(0) in (6.23b).

We show next that the solution 6 R}(#) of eqn.(6.23a) is actually bounded as # — oo and the solution
§¢9 of eqn.(6.23b) obeys 64 = O('/*) in the same limit. We consider to this end the Lyapunov
expression:

L =r(5RJ(9)) + s(669(6))* /6" (6.26)

where r,s > 0 are two parameters which may be chosen freely. Denoting by ar(6),ap(f) and
br(0),bp(0) the coefficients of 6RY, ¢4} in eqns.(6.23a),(6.23b) in turn, we may write, after taking
(6.25) into acount:

1dL
2do

ran(@)GRY)? + (rap(9) + s ") (SR (568

bp(0) <02 1 (369)
+ s 01/2 ((5¢4) —18 03/2

L L
oy < /2 oy < 0y & (6.28)
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Using now the inequalities:



and the fact that the last term in eqn(6.27) is negative, we deduce:

o <20 (an®)] + [0 ar @)+ 22O 1 i) (6.29)

For large 6 the dominant term is the one containing |bg(#)|/6'/* as one sees by reverting to eqns.(6.23a),
(6.23b) and (6.25): it falls off like 1/6. Inequality (6.29) can be integrated to yield

L < const x 2CVs/T, C = sup|br(0)|0%/*

We may choose r and s so that the exponent of 6 be 2d, with 0 < d < 1/8. It follows then from
eqn.(6.28) that:
1003(0)| < const x g4/ (6.30)

We return now to eqn(6.23a) and integrate it from an initial value ; to some : since §¢3 obeys (6.30),
the integral over 06 is convergent and we deduce from Gronwall’s inequality that:

0
SRY() < const x exp(/ lar(6)|df) < const (6.31)
0;

Thus 6RJ(6) is bounded for all . Further, integrating eqn.(6.23a) between two values 6,, and 6,, one
sees that |6R$(0,,) — 0RY(0,)] — 0 as (0, 0,) — oo and thus §R}(0) approaches a limit as § — oo.
This limit is approached like 1/0'/4~? (The dominant term in (6.23a) is the one containing §¢°). From
(6.24a) and the fact that k°(9) ~ 1/6%/3, it follows that, if the exponent d in (6.30) is less than 1/8,
SRY(6) approaches itself a limit as § — co. This approach is at least of O(1/1/8-%).

We apply next Gronwall’s inequality to eq.(6.23b), after taking (6.25) into account:

0 0
1663(0)| < sup | / k°(0)? Ry, 0(0)6 R(0)d6| exp(const x / k2(0)3d0) < const x 974 (6.32)
0 0

where we have used the fact that the integral in the exponent is convergent, whereas the factor in front
is bounded by const x /% in view of eq.(6.31).As a consequence of (6.32) we may assume from now
on that the small exponent d = 0. We define further:

0
5(6) = 56800 + 15 [ KO Ruol0)GR)0)as (6.33)

Taking into account eqns.(6.24a),(6.24b) it is true that:

40
DO _ cp0) (67 0) + er(0) 06) ()

cr(0),cp(8) = O(K°(0)Y)

(6.34)

We integrate eqn.(6.34) from an initial value ¢; to 6 and use the bounds of eqn.(6.31), (6.32) to deduce
that §¢J(0) is itself bounded and has a limit as § — co. We can now revert to an "‘original"’ variation
of the "‘rest phase"’” §¢" defined by :

_ 7 1o
56" = 66" + / KO(6)2 Ry, o(8)5 RO (6) (6.35)
0
Since (5_q§0 is related to 6@) by (6.24b) and 4] defined in (6.33) was shown to be bounded it follows
that d¢ is itself bounded and has a limit as § — oo, which is approached like 1/6/8 (or 1/71/6) We
denote the limits of §R%(8), 5¢°(9) by 5R0,<5(;5?.
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We now turn to point(ii) of the proof and show for finite ¢ that, if 7 > ¢=® with 0 < a < 3/8,
the difference between 0R(6(7);e) = JR(A) and its value at 6(t = 7/2) becomes vanishingly small as
e — 0. The same is true for §¢(0;¢) = 64(6) of (6.35). This is done by repeating the argument above
but using the complete function k(0) = k(0,¢) for finite £ and correspondingly a modified Lyapunov
function £(0) :

0
z(a):r(aR4(9))2+55£‘égf, B(0) = / k(0)2d0 (6.36)

The function ®(6) increases like #1/4 for 7 < 1/~ and then stays approximately constant at values of
O(1/4%/3). All arguments used above for ¢ = 0 may be repeated with the conclusion that

|0R4(6)| < const 64| < const x ®() < const x 874 (6.37)
and that the differences to the values at t = w/2 obey:
|6R4(T = ™) — 6R4(t = 1/2)|, |0¢a(T = ™) — 64(t = m/2)| < Ce/? (6.38)
Returning to the original 6R(6), 64, these bounds are turned into:
I6R(T = e7%) — 6R(t = 7/2)|, |66(T = e ™) — 6(t = 7/2)| < Ce/® (6.39)

We turn now to point (iii) of the argument and compare directly the values of §R(6,¢), 6¢(6, ) with
those obtained for ¢ = 0. To this end, we revert again to the equations (6.23a),(6.23b) and (6.34)
written appropriately for € = 0 and a finite small € value. We subtract them and using notations like,
e.g.: A(6R4(0)) = 6R4(0,¢) — §R}(0) and similarly for A(6d4), A(6é4) and also Aar(8) = agr(f,e) —
ar(0,0), etc.(cf.(6.29)) we obtain equations of the form:

dAgZﬁ) = Aap(0)5R4(0) + Aap(0)564(0) + a%(0)ASR4(6) + a%(0)Adhs(0) (6.402)
‘mg;‘b‘l) = Abr(0)0R4(0) + Abp(0)5¢4(0) + b%(0) ASR4(0) 4 b%(0) Adg4(H) (6.40D)

These equations are an inhomogeneous version of eqns.(6.23a), (6.23b). The solutions of the homo-
geneous part have been shown to obey the bounds of eqns.(6.30),(6.31). By means of the method
of "‘variation of the constants"’ we may write qualitatively a general solution of eqns.(6.40a),(6.40b):
since the initial conditions are AdR4(0) = Adp4(0) = 0 (we are interested in those solutions that
obey,e.g.0R/ORy(0 = 0) = 1,independently of €), we obtain, e.g.

ASR(0) = / 9<fR<9/><6¢<2>><9/> — f5(0n (SR (01))dor(5RM)(9)
0 (6.41)

- / e(fR(Q/)(5¢(1))(9’) — fo(0))(SRM) (1) do1(SR™)) (6)
0

where fr(6), f4(0) represent the inhomogeneous terms in eqns.(6.40a), (6.40b) and §R®, o) i = 1,2
are two independent solutions of the homogeneous equation with a wronskian equal to unity. As an
example of an estimate of the differences Aagr,Abg, etc. we consider:

Abr(0) = 0(% - M) =0, r<1/y (6.42)

These differences are to be evaluated at fixed 6, i.e. the values of 7 appearing in the two terms in
(6.42) are a priori different; however, as shown in Appendix D (cf.eq.(D.12) it is enough for coarse
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estimates to use in both terms the value of 7 corresponding to € = 0, if 7 < ¢~° with ¢ < 3/8. Using
eqns.(6.30),(6.31) one verifies that :

fr(0) = O3, f4(0) = O(e¥/*r) (6.43)
With this we estimate from eqn.(6.41) and its analogue for Ad¢y:
ASR4(0) = O30T/, Adpy(0) = O(%46?) (6.44)

Taking into account eqns.(6.24a),(6.24b), we verify that these estimates hold unchanged even for
AOR(0), Adp(#). Using eqn.(6.35), we obtain:

Abdp = O(3/497/3)

If 7 < e B0 < e *8/3), AGR, Ad¢ tend to zero with e provided 3/4 —283/9 < 0; this is fulfilled if,e.g.
B = 1/5. For any choice of a < 1/5, the difference between §R,34(7) and their values at t = /2
vanishes as ¢ — 0 (cf.eqns.(6.38),(6.39)). Acording to (i) JR%(#),5¢°() approach their asymptotic
values like 1/6/® and thus the differences to these latter are O(¢*/®) at 7 = ¢=®. We can thus
conclude the limiting values (JR(t = 7/2),5R%), (6¢(t = 7/2),64") also approach each other as ¢ — 0.
This ends the proof of Lemma 6.4.

6.3. The mapping DPy

The first derivative DPg of the Poincaré map is obtained from the values at 7 = 7/(2e%/%) of
two special solutions 0R(6),0¢(8) of the variational equation, with initial conditions at 7 = 79
:(0R =1,6¢ = 0),(6R = 0,6¢ = 1) in turn. According to Lemma 6.4 the values OR/ORo(m/(23/8)),
OR/¢o(m/(2€3/8)) approach as e — 0 the asymptotic values (OR/ORy)°, (OR/d¢o)° of the solutions
of an equation in which € was set formally equal to zero (we recall Ry = R(m), oo = ¢(19), with R, ¢
of eq.(6.15a),(6.15b)). These values turn out to be:

OR\"’ R\’
AY =5 ) =096 AYb=(-) =008 6.45
() (50 649
The same is true for the asymptotic values of the derivatives of the "‘rest phase"’” ¢°
96\’ 96 \"
BY=(=t) 2025 BY=(-—] =1.08 6.46
4= (om) b= (50 (6:46)

These values depend on the point 79 which, for numerical convenience, is chosen sufficiently large so
that the asymptotic form 7(7) ~ 7'/3 be valid ?°. It turns out that the convergence of the variations
SR(0) to the limiting values is rapid, that of the ¢ is, however, very slow.

On the other hand, the derivative d¢/0Ry(6) diverges as § — oo. This shows the origin of the
asymptotic circle map given by the Duffing equation: the small disk of radius €™ is "‘stretched"’ in a
7-time interval of the order 1/ in a rectangle in the (R, ¢) plane, highly elongated in the ¢-direction.
In a 7 - interval of O(1/~), friction plays no role: this stretching is entirely "‘hamiltonian"’: the volume
in phase space is conserved (the transformation (6.15a),(6.15b) is not canonical;for a unit jacobian,
one must multiply d¢ by R; the area of the rectangle is multiplied by a factor R(7 = 1/7)/R(m) =~ 1).
Clearly, when ¢ is "‘wrapped"’ back on the unit circle, it will possibly cover it - depending on the size
of the initial disk - more than once: it is this mapping of the circle into itself which leads to the chaotic
motion observed at smaller values of the damping?'. The arguments of this paper show that it must be
observed at increasing values of the damping as the forcing I' increases indefinitely.

2015 = 10 is a possible choice; clearly, its value drops out in the final results

21 As is shown in Section 7, chaotic motions appear long before the circle is completely covered
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In Fig.8 we show the image of the circle A = 1 at ¢ = —7/2 in the (w,dw/df) plane at t = 7/2
for €3/8 = 0.003, k = 0.04; one sees the extreme angular stretching (in the ¢-direction) caused by the
diverging derivative 9¢/0Ry. The crosses show the approximation offered by the variational equation
(for OR, $/ORy, ¢o). Fig.9 shows a situation at smaller damping (¢3/8 = 0.002, x = 0.02) where the
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Figure 8: The image of the circle A =1 at t = —7/2 in the (w, dw/df) plane at t = 7/2

stretching exceeds 27. At smaller € (larger forcing) the arms of the spiral approach each other so
that asymptotically the disk A = 1 is mapped into a very thin ring at t==/2. The points show again
the approximation of the Poincaré plot by the first derivative; feeling supported by this numerical
evidence??, we do not discuss in this paper at all the corrections due to higher terms of the Taylor

expansion.

eps38=0.002,

Lambda=1,k=0.02

15

Figure 9: The image of the circle A = 1 at ¢ = —7/2 in the (w,dw/df) plane at t = 7/2 at smaller
damping

We evaluate next more carefully the derivatives 9¢/0Ry(0(7/2)), (0¢/D¢0)(0(7/2)) for finite, small

values of €. B o(n/2)
o _ 9 T [7F 2 OR
=1 /0 KO Reo(0) 5 (0)d0 (6.47)

22The agreement is better than warranted by the estimates of the paper
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Both the first term and Ry, .(6), (§R)(¢) under the integral sign are bounded 23 at § = 6(7/2) . The
leading behaviour of the phase is determined by the integral: according to Lemma 6.1 and Lemma 6.4,
the values of R .(0(7/2)),0R/OR((r/2) have limits as € — 0, denoted by Ry, £(0), A% (vgl.Lemma
6.1 and 6.45). Thus we may write for the dominant contribution in (6.47):

7/(2e3/8) _9
099 < const x / exp(=297) .

- N
—Ru(0)A% /0 k(0)2d0 p—

70

(6.48)
const

MVE

which shows explicitly the divergence as ¢ — 0 in the factor 1/71/3. It turns out that the factor
multiplying 1 /71/ 3 has itself a slow logarithmic dependence on e and approaches a finite value as
e — 0 (=~ 1.80). Fig.10 shows the e-dependence of the quantity Cy(e) defined by comparison to (6.48)

through
0 B C’o(a)A%
<8Ro)d RRE (6:49)
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Figure 10: The e-dependence of the quantity Cy(g) of eq.(6.49)

The remaining x-dependence of Cy(e) is negligible in our range(e"™ /v'/3 ~ 1). The order of magni-
tude of 0¢/IRy is correctly reproduced if the integrals are simply cutoff at 7 = 1/+ and the exponential
term in k(0) is ignored. For finite € the expression in (6.48) should be multiplied by (1 + O(&®)) for
some small s, which controls the approach of dR/0Ry(0(r/2)) to A% as € — 0 (see previous section).
We compute next (upper bounds to) the corrections to the dominant term and evaluate, for finite &:

0(m/2) OR OR
I= /0 k(O (Rr.o(0) 5 (0) = Ru.s(€) g (0(m/2))df (6.50)

In Appendix E we show that this integral is bounded and even has a limit, which we denote by D%, as
€ — 0. Thisis in principle a finite quantity which must be added to the contribution of the "‘rest phase'’
(6.35). However, since Ry, .(0),0R/0R(8) are, apart from small oscillations, remarkably constant, the
contribution of (6.50) is ~ 0 The same arguments may be repeated for the partial derivative d¢/d¢o:

239(n/2) means the #-value corresponding to t = 7/2; it is O(1/e'/?)
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the leading term is O(1/~4'/3) in analogy to (6.48):

0 7 V3 CoAY
o (00/2) = 5T/ R(0) A% = (651)

with Ap of eqn.(6.45). There exists in principle an additional bounded term, which tends to a limit
DY as e — 0. It is the sum of 9¢/dpy, which approaches (slowly) the value Bp, eq.(6.46) and of the
analogon of (6.50), which is = 0. To conclude, the map (Ro, ¢0) = (R(8(7/2)), p(6(7/2))) is given by
(Ror, ¢or are the values of (R, ¢o) assumed by X at 79) :

Ro = Ry f(e) + Ar(e)(Ro — Ror) + Ap(e)(¢o — ¢or) + higherorders (6.52a)

CphA CphA
o = or(/2,€) + <—°717;(5) -~ CR(E)> (Ro — Rov) + <—°7;/’;(5> - cp(s)> (é0 — o) +(h.o. |
6.52b

where the higher orders are O(¢2"™) multiplied by the order of magnitude of the second derivative.
The terms Ag(e), Ap(e) approach the values A%, A% of eq.(6.45). The terms Cg(e), Cp(e) are the
sums of the corrections to the leading 1/4'/3 term given by (6.50) (and its analogon for R/d¢) and
the contributions (6.46) of the "‘rest phase"™ ¢ in (6.47). As e — 0 these terms approach (slowly) the
limiting values (6.46) given by the e = 0 equation:

Cr(e) = B} + DY ~ BY, Cp(e) = BY + D% ~ B}, (6.53)

Eqns.(6.52a)(6.52b) contain the matrix elements of DP, eqn.(6.20). The complete jacobian DPg eval-
uated at (An(0),dAn/dr(0)) is computed by performing the matrix multiplication in (6.20). The
elements of DP; are in the limit € — 0 given by the solutions of eqn.(6.21) with v = 0 and 7, replaced
by nroo . For reference, for the choice 79 = 10 they are:

aUOL 8U’IOL (654)
Ougr, oulpy,
The mapping DT for 7 = 79 is obtained from (6.14). The dominant terms are:
OR OR
= 0=m/2)=—-0.43 = 0 =m/2) = —0.247 6.95
Ti= (0 =m/2) = ~043 o= g (0 =/2) (6.59)
With this, the right hand side Poincaré map reads (cf.eq.6.16):
du du
(ur(0), T:(O)) = (R f(e) + J1ur(0) + jQT:(O) + O(e%"m),
C du
0(x/2) = 0(10) + dr(r/2,¢) = 75 (Trur(0) + Fo—(0) (6.56)
v dr
duL €2n7r
+ Eour (0) + Fo——=(0) + O(m)

where ¢r,(7/2,¢) is defined through (6.8a), (6.8b); it contains a "‘secular"’, divergent term @, r(6(7/2))
described in Lemma 6.2 (cf. eq. (6.10)) and a "“finite" term ¢,(7/2) which has a limit ¢, (0) as
€ — 0, as described in Lemma 6.3. Further, Fy, Fy approach as ¢ — 0 constants obtained from the
values in eqns.(6.53),(6.54): Ey ~ 1.02, Fy ~ 2.11. The term O(e2*" /4'/3) is (only qualitatively) jus-
tified as follows: the second derivative of the Poincaré map is expected to diverge like v~1/3 as e — 0,
like the phase ¢y, and its first derivative 6¢, and is multiplied by terms of O(u?) = O(£2"™); since - as
may already be apparent - we expect bifurcations to occur when €57 /41/3 is O(1), this correction is of
the same order of magnitude as the terms preceding it. However, for small ¢, the bifurcation pattern
is determined by the divergent terms (see Sections 7 and 8).
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7. The Complete Map P and its Associated Circle Map

7.1. The map P
We put now together eqns.(5.52a), (5.52b) and (6.56) to obtain the image of a point

wd—w)
" do

situated in a disk around (X7(—7n/2),dX1,/d0r(—n/2)) under the mapping P of (3.40) (with the change
t = 0, r of the independent variable). We may write it as:

P = (A cos ¥y, —Asin ¥y)

A =R g () + AST(TVL(0) + o (0)) cos(Wg + D1 (A) + ) -
~(FVA(0) + T2 0)) sin(y + BL(4) + )} + O ) |
\110 =7+ 9R(7T/2) — 93(7’0) + gf)L(TF/Q,«E) — CUA/_;K;;{(jl‘/C(O) + jQC?;C (0))><
cos(Wo + ®r(A) + Q) — (71 Vs(0) + jz%(O)) sin(Wo + @1 (A) +Q)}
T (7.1b)

dVe
+ A" {(EV.(0) + F I

(0)) cos(¥g + PL(A) + Q)

2Kk

9
%)

dVs .
— (EVs(0)+ F - (0))sin(¥o + @1(A) +Q)} + O(
where we have used the notation in (6.56).In the region where "7 /41/3 is O(1) the last two terms in
(7.1b) are both of O(e"™) and will be treated together. These expressions are simplified by introducing
M and ¢ through:

JVe(0) + T2 (0) = Msin¢ (7.2)

v, av,
e (0) =Mcos§  AVs(0) + P2 -

In eqns.(7.1a),(7.1b) we wrote the A-dependence of @, eq.(5.17) explicitly. The term 7 in (7.1b) takes
care of the minus sign present in the definition of the half-period map P (cf. the definition eq.(3.42)).
We perform next the ¢,y-dependent transformation of the angular variable in (7.1a), (7.1b):

Yo =x+m+0r(n/2) — Or(70) + ¢r(7/2,8,7) = Sx (7.3)
with which the transformed mapping P :
P=S"1PS (7.4)

reads:

P A:>RL,f(E)+O(EMT)

X B cos( (e ) + 0™ =
with the following notations:
B =CoMRy, f(a)sf;; (7.6)
and: }
Y(e,v,A) = 0r(n/2) — Or(10) + Q+ ¢r r(7/2,6) + &(,7) + Pr(e, v, A) (7.7)
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The first terms in eq.(7.7) give (almost) the total 6 - variation from —m/2 to m/2 (cf.eq.(5.48):

w/2
= \\/ff P | sint|'/3dt + Op(e) (7.8)

where ©¢(e) has a finite limit when ¢ — 0. For small € eq.(7.5) shows that, under P, A is squeezed
to values near Ror(g) (as is seen in Figs.8 and 9) and therefore the term ®p(e,v,A) gets very close
to ®r(e,v, Rr r(e)). The factor Ry ¢(e) has a limit Ry ¢(0) as € — 0, independent of . (cf. Lemma
6.1 and Appendix D). The same is true for the quantity M (cf.(7.2) according to Lemma 6.4. It is
natural then to expect that the one-dimensional mapping of the unit circle into itself:

Al = (93(7['/2) — 91{(7’0) +Q

IT: X = Becos(x + %) (7.9)

with
Y =A0+ ¢L(7r/27 5) + 5(5’ ’Y) + (I)L(RLJ(e)v &, ’Y) (710)

contains the essential features of the bifurcation structure of the mapping P, eq.(7.5) and thus of P.
In the following subsection we present some relevant features of this mapping, which is otherwise well
studied [Zeng & Glass, 1989][Collet & Eckmann, 1983](this is the standard reference on one-dimensional
mappings; however, the map (7.9) falls a little outside the class of maps considered there.).In the next
section, we discuss its relation to the real Poincaré mapping of the Duffing equation P of (7.5).

Clearly, the mapping II may show a bifurcation structure in the region of parameter space where
B = O(1). This justifies some of the statements made before concerning the orders of magnitude
coming into play (see comments following eq.(7.1b) and eq.(6.56) above). Referring to the discussion
of Section 6.3, especially to that accompanying Figs.8 and 9, it is easy to give a "‘physical"’ rationale for
the parameter §: in a 7-time interval of order 1/~ the motion is (almost) hamiltonian and the original
disk (ellipse) in the (u(0), du/d7(0) plane with radius of O(g"™) is stretched into an increasingly thin
filament of increasing angular aperture wrapping itself around a circle of radius Ry ¢(e). The angular
aperture is increasing at the rate /4 (cf.eq.(6.32)), where:

0~ \/g/ 3471 321/37'4/3

In terms of # the 7-time 1/7 is O(1/~4*3) so that the original aperture of O(£"™) becomes in a 7—time
1/~ of O(e"™ x 1/+'/3) which is precisely the order of magnitude of 8 in (7.7). At 7-times larger than
1/~ the angular aperture does not increase any more considerably, but the area of the "‘wrapped"’
rectangle decreases simply due to the damping by a factor ~ 7.

7.2. The circle map 11

In this section we gather some properties of the map II of eqn.(7.9).Clearly its features are periodic in
Y. From the definition of the latter in eqn.(7.10) the dominant term for small € is Af of (7.8) which
behaves like 1/4/¢, i.e. like I'Y/3. Thus, we expect the bifurcation pattern in the I' — A plane to have
at high forcing an increasingly better periodicity in T'V/3. At fixed e, 8 decreases with increasing 7, i.e.
with increasing A. For a comparison with "‘normal"’ bifurcation plots, we draw bifurcation lines in a

Y — (—p) plane.
(i)For g < 1 (high damping), the equation:

Beos(x + %) =x (7.11)

has, for all ¥, only one solution x,. This solution is a stable fixed point of II since |dII/dx(xs)| < 1.
Even more,
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Lemma 7.1 The solution xs of (7.11) is the only invariant set under 11 if § < 1

Indeed, |dII/dx| < 1 for all x, so that the distance between any two x1, x2 is contracted under II if
8 <1

M0e) - TM0a)l < swp [0l - x| < [0 — )| (7.12)

X€(x1,x2)

Thus, the sequence of all iterates of any y under II converges (to xs). (ii)If 8 < =, II maps the
interval (—m, ) into itself, so that the theory of iterated mappings of intervals, as presented in Collet &
Eckmann [1983] and Guckenheimer & Holmes [1983] may be directly taken over. If ¥ = 0, the mappings
I1(5,0) are unimodal in the sense of Collet & Eckmann [1983]. The mappings II(3,% = —x/2) apply
[0, w],[—7, 0] into themselves and - if restricted to these intervals - make up a full family of unimodal
maps|Collet & Eckmann, 1983, §II1.1,p.174], for 0 < 8 < 7. Moreover, for all values of X, the functions
II(5, ¥)(x) have a negative Schwarz derivative:

2
= jm_3 <f”> <0 (7.13)

For unimodal families with negative Schwarz derivative there exists a sequence of values 51 < fBs...
which accumulates at a value 8. < 7 and for which there exist superstable orbits of period 2P. For
B = f. there exists a (nonperiodic) attracting Cantor set for the action of II(3, —7/2). For larger
values the motion may be "‘chaotic"’ (with sensitive dependence on the initial conditions). Thus, we
expect that chaotic motion occurs in the Duffing equation before (i.e. at smaller §) the Poincaré
map covers the whole angular range 0 < ¢ < 27 (cf.Fig.9). Even without the restriction to unimodal
maps,i.e. for arbitrary choices of 3,condition (7.13)places restrictions on the possible invariant sets of
IT (see Lemma 7.2 below). (iii)At some fixed values of ¥, if we increase (3, we reach a value beyond
which eqn.(7.11) admits of three (or more) solutions. The limiting values Sg are those for which the
line IT = x is tangent to the graph of II(x), i.e.

Xs = Bscos(xs + %)

1 = —fBgsin(xs + %) (7.14)

It follows that:
Be=1+x5>1 (7.15)

and thus Bg = 1 only if xs=0; eqns.(7.14) imply then ¥ = —7/2 (mod 27). The bifurcations occuring
when 5 = (g are - if ¥ # —7/2 - of saddle-node type : at neighboring larger values of /3, two more
solutions appear,corresponding to a stable and an unstable orbit of period 1 (under the action of II).
If ¥ = —x/2, the bifurcation at § = 1 is of the pitchfork type: the unique solution existing at 5 < 1
loses its stability and a pair of stable solutions of period 1 appear at 8 > 1.

(iv) From (7.14) one can obtain the exact form of the bifurcation line § = Sg(X).Near § =1 it has
a cusp: indeed, let in eq.(7.14) ¥ = —x/2 4+ o so that (7.14) implies:

tan(xs +0) = x5 (7.16)
For small xs and o this means, using (7.15):
xs(0) = (30)'/3 Bs(o) ~ 1+ (30)%/3 (7.17)

which shows the cusp behaviour. Fig.11 shows the saddle-node bifurcation lines in a ¥ — (—f) plane
(with an origin for ¥ defined mod(27).
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Figure 11: The bifurcation lines in the ¥ — (—/) plane

(V)If at a fixed point xr of (), dlI/dx(xr) = —1, the map II has a flip bifurcation®*, if certain
transversality conditions are obeyed. In this case, these latter?® are at fixed ¥ simply: X% +2#0,
X% +2/3 # 0. The analogon of (7.14) is now:

XF = Brcos(xr + X)

1 = Bpsin(xs + %) (7.18)

from which one sees that Sp(X) > 1, with equality only if x7 = 0, which occurs at ¥ = 7/2.
(vi)Eqn.(7.18) allows an exact determination of the flip bifurcation lines, see Fig.11. Their maximum
at the line 8 = 1 is quadratic, which may be easily seen as follows: let ¥ = 7/2 + o so that (7.18)
implies:
tan(xr +0) = —xF (7.19)

from which, for small xg, o, one deduces:

xr(0) = —% +0(0®). (7.20)
Then (7.18) leads to (cf.(7.15)): ,
Bp(o) ~ 1+ % (7.21)

(vii)The flip bifurcation curves are much broader than the saddle-node ones (see Fig. 11). We give
a simple estimate of the ratio of their widths (measured at the points where they intersect with the
smallest values of 3): at such points with coordinates (3°, 3°), the four equations (7.14), (7.18) (for
the four unknowns 3°, 3°, XOS, X(,()?) imply:

% =4y = /(892 — 1 (7.22)

We look for solutions with 3% < &, which means that |x%], |[x%| < 7. The second of each pair of eqns.
(7.14),(7.18) exclude in turn the possibility x% = x%. From each of the pairs (7.14),(7.18) one deduces
that:

cot(x% + 29 = x% = —x% = cot(x% + X9 (7.23)

*see Guckenheimer & Holmes [1983, ch.III, Theorem 3.5.1]
25 Conditions (F1) and (F2) in Guckenheimer & Holmes [1983]
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so that:

Xr = Xs(modr)
With (7.22) this is possible only if X% = +7/2, X% = Fr/2. If X2 = 7/2,(7.23) and (7.14) imply
$9 = —arctan(m/2) (mod 27). If x% = 7/2, the solution accepted by (7.14) is % = 7 + arctan(r/2)
(mod 27).The ratio p of the length of two consecutive intervals between possible values of X is:

7w — 2arctan(m/2)
7+ 2 arctan(m/2)

p= ~ (.22 (7.24)

(viii)At a larger value of 3, B2(X) the orbits of period two which appeared at the flip bifurcation
described above undergo another period doubling bifurcation. Fig.11 shows the results of a numerical
calculation of f2(X). As is well known in many instances, one can find values 84(X), 8s(X) at which
further bifurcations to periodic stable solutions of period 4,8..etc. occur. For ¥ = 0, one obtains
By = 1.8271, B4(0) = 1.9429, B5(0) = 1.9674...

(ix)For a complete description of the situation, one needs also an argument that, at least for values
of B not too large, the mapping I contains no other invariant sets apart from the fixed points (or orbits
of period 2,etc.) described above. Because the family II(/3, 3) does not fall entirely under the classes of
one-dimensional mappings described in Collet & Eckmann [1983] and Guckenheimer & Holmes [1983],
we give a statement which guarantees the (expected) absence of supplementary invariant sets for small
enough 3:

Lemma 7.2 Let (52,(X) be the second positive root (i.e.different from —%) of the equation:
(8,5 x = B) = Beos(8 + %) = —% (7.25)

if ¥ < 0 and the positive root of (7.25) if ¥ >0 (—m <X < m). Let Baq(X) be the second positive root
(i.e.different from 7+ %) of :

(8,55 x = —B) = Boos(=B+5) = =1 — 3 (7.26)
if X < 0 and the first positive root of
[(8, % x = —B) = Beos(~B+ %) = 7 — % (7.27)

if© > 0. Let:
B(X) = min[r, Bou(E), Baa(2)] (7.28)

Then, for 0 < f < Be(X) the invariant sets of II(5,%) consist of at most three fized points and two
orbits of period two.

The proof of this statement is relegated to Appendix F, because it is not very short; it uses the property
of II to have a negative Schwarz derivative (7.13) and owes a lot to the presentation in ch.IIT of Collet
& Eckmann [1983]. The conditions (7.25),(7.26),(7.27) describe superstable orbits of period two (i.e.
orbits which pass through the maximum g or the minimum —fg of II(53,%;x)).Ifle.g. ¥ < 0, the
maximum and minimum of IT occur at xpy = =3, X = —7 — X in turn, (xar) = 5, H(xm) = —5:
eq.(7.25) states that the iteration of y,, under II should repeat itself after two steps. For the root
Biu, = —X of (7.25) the fixed point of II lies on the maximum of II(x) (and on the minimum for
f1a =7+ X in (7.26).
This closes the qualitative discussion of the mapping II.
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8. The Bifurcations of Periodic Solutions at Large I'(¢ — 0)

8.1. The bifurcations of 11 in the I' — A plane

Instead of the parameters I'A, we can use 5(e,7), X(e,7) of eqns.(7.7),(7.10).If we believe that the
map (7.9) reproduces the main features of the Poincaré map P, then the tips of the bifurcation curves
lie - alternatively saddle-nodes and odd-periodic - simply periodic(flip) - along the line § = 1. Above
certain critical values of 5 - we denote them by B - there appear bifurcations to orbits with higher
period. Assuming ¢ is so small that Roz(¢), M(e) may be replaced with their limiting values at ¢ = 0
(from eqgns. (5.53) and (6.55) Mo = 0.6814), we obtain for the asymptotic form of the bifurcation lines
of (7.9): )

1 1 1 I5) InlnT’

A (D) = mlnr — 3—ﬂ_lnlnF — gln MoR1(0)Ch + T

with Ry, £(0) of Lemma 6.1 and Cy of eq.(6.48). Fig.12 gives an idea of the appearance of the lines
B=pina A/InT vs. InT plot, with B = 0.8,1(solid) and 2 and of the asymptotic approximation
(dotted) of (8.1). The bifurcation structure of II, eq.(7.9) is periodic in X, i.e. the bifurcation pattern

) (8.1)

0.022 ] T T

0.02]
00181 -

0.016 e

0.014 4

Delta/In(Gamma)

0012
0.01{/

0.008 -

0.006 - ’/'

20 40 60 80 100

In(Gamma)

Figure 12: The lines 5=0.8,1(solid) and 2 and the approximation (8.1) to 5 = 1,(dots)

repeats itself along lines of fixed x (eq.(1.21) in intervals AI' obeying:
YT+ AN kIn(I'+ ATL')) = X(I',xInT") =27 (8.2)

The dominant term in X, eq.(7.10) is A, eq.(7.8), which is proportional to 1/\/€, i.e. to I''/3
(cf.eq.(1.7). Tf 1/y/e is much larger than 4~/ - the magnitude of the second term ¢ r(7/2,¢)
in (7.10)- the pattern repeats itself in equal intervals of /3, independently of . The period is:

2T 1

ATV =L 1 g~2804 (8.3)
2, .
\/gf:/r/Q | sin ¢|1/3
Since the maxima of the saddle-node and flip bifurcation lines occur at ¥ = —x/2,7/2 (mod27), they

are asymptotically equidistant in T''/3 as shown in eq.(1.6). At smaller values of s (or smaller values
of £) periodicity in I''/? is still the dominant feature but the shape of the bifurcation lines is distorted.
Fig.13 shows the appearance of the lines ¥(g,~) = const in a A/InT vs. I''/3 plot (the horizontal line
is B(e,v) = 1). We now show that near 8 = 1 the bifurcation structure of P must reproduce the one
of IT if T is sufficiently large (e sufficiently small).
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Figure 13: The lines ¥ = const after inclusion of the other terms in (7.10)

8.2. Inferences from 11 to P

The mapping P, eq.(7.5) is equivalent to P and may be written in components (Pa, Py ):

A= Ry y(e) +"G(A, x,6,7) = Pa(A, x,,7) (8.4a)
A -
x = B(e,7) cos(x +2(X\,e,7)) + " H(A, x,e,7) = Py(A, x.€,7) (8.4b)
Rp r(e)
(A, e,7) = 2(e,y) + Pr(A,6,7) — PL(RL £(€),6,7)) (8.4c)

where G and H are differentiable functions of A and y, bounded and with bounded derivatives (up to
the third order) with respect to A,x as € — 0 (uniformly with respect to k, as long as K > kg > 0).
The difference ®1,(Ry ¢) — ®1(A) in (8.4c) is proportional to A% — R%,f and thus, using (8.4a), to €.
It is convenient to regard in (8.4a), (8.4b) the quantity "™ multiplying the functions G and H as an
independent parameter ¢ which may be set equal to zero (and obtain thus the mapping II, eq.(7.9) or
to €7 (to obtain P). With the assumptions concerning the functions G and H in (8.4a), (8.4b) the
approach of P to II as ¢ — 0 is uniform with respect to x, A, 8 € [0,27] x [0, Ars] X [B—, B+], where
Ay is an upper bound on A, as derived in Section 4.1 and f_ < 1, 4 > 1 surround § = 1. As a
consequence, we shall show generally that the properties of the circle map II are carried over into those
of the complete mapping P for ¢ sufficiently small, at fixed e; we may replace then the phrase "‘as
g — 0" with the one "‘as ¢ — 0" using the approximate periodicity in ¥ of Py, eqn.(8.4b. Indeed, if

some property holds "‘for ¢ < ¢o"’, it will be true for all € < qé/(m). In the process of letting ¢ — 0
and choosing a correspondingly small €, we assume first § = const. With this, it is easy to show:

Lemma 8.1 If xo is a fized point of I ,eq.(7.9), with dI1/dx(xo0) # 1, then, for sufficiently small ¢,
P also has a fized point (Ao, Xo) so that:

Ao — R, 1X0 — x0| = O(e"™) (8.5)

The argument - essentially the same as for the implicit function theorem - uses the periodicity of IT with
respect to ¥ and the fact that Py tends to IT as ¢ — 0. First, for any x the equation Py (A, x,q) = A
has a solution A = A(x,q) contained in (Ry f(¢) — ¢M, Ry, () + ¢M) where M is an upper bound
for |G(A, x)| of (8.4a). Indeed, the function Pa(A, x) — A is monotonical with respect to A for small ¢
and assumes opposite signs at the ends of the interval. The function A(x, ¢) is differentiable and

AN OPA/OX

ax ~ opyjon ~ O 50
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Let now § > 0 be such that: |dII/dx(x0) — 1| > 0 and x_, x4+ so that xo € (x—, x+) ,

(s ) = x4/ | >0 (8.7)

and .
’a(X) - 1| > 5) X € (X*7X+)' (88)

Using in Py (A, x, ¢) the function A(x, q) of (8.6), we evaluate (cf.(8.4¢c):

Py (x; Alx)) — II(x)| < |5(RLZJ\C(€) — 1) cos(x + X)vert 59)

+ |5 cos(x + f)) — Beos(x + )|+ O(q).

Both differences appearing on the right hand side of (8.9) may be made as small as one wishes by
allowing ¢ to be sufficiently small. In particular, the left hand side may become less than §/2 with a
choice of ¢ valid uniformly with respect to k, provided k > ko > 0 and with respect to x € [0, 27].
Indeed, one estimates (cf.eq.(8.4c)):

B 1 q

Re MeB(i e - 2R

O (A) — ®L(RyL 4(2)) < const x (A* — R ) (8.10)

We conclude from (8.7) and (8.9) that the function P, (A(x),x,q) — x changes sign between y_ and
X+- It is also monotonical there, if ¢ is small enough. Indeed,the difference

*x _ar T S+ a®r
+8 s1n(x+Z(A)) —sin(X+E(A))‘ +0(q)
RL,f(é‘)

may be rendered as small as one wishes, upon using (8.6),(8.10), in particular smaller than |1 —
dll/dx(x)|, cf.(8.8). Thus for ¢ small enough, |dP,/dx — 1| # 0. It follows that, as announced,
Py (A, x) — x vanishes just once between x_ and x4. This proves Lemma 8.1.

Assume now II(x) has several fixed points with y; with dII/dx(x;) # 1. Choosing for every x;
corresponding intervals (y—, x+) as in (8.7), we may assume - using the uniformity of the approach of
P, to II - that (8.7) is valid at all points of [0, 27] which lie outside the union of these intervals. We
call this union Is. Then, by letting ¢ be small enough, we may ensure that:

Py (A x) — x| > [T(x) — x| = [Px(A, x) = TI(x)| > §/2, (A, x) € [0,Ap] x Cls (8.12)

Further,
Pa(A,x) —A[ >0, xely, Aé¢(Rpy—qM,Rpy+qM) (8.13)

as follows from the definition of M. But in each component of the remaining domain (Ry, s —qM, Ry, s+
gM) x Is,according to the argument of Lemma 8.1 above, the equality :

1

holds at only one point (A, x), which is the "‘evolution
We conclude thus:

with ¢ of the fixed point of the circle map II.

Lemma 8.2 For ¢ sufficiently small, the fized points of the complete mapping P are in one-to-
one correspondence with the fized points x; of the circle map I, provided the latter are such that
|dI1/dx(xi) — 1| > 9, for some § > 0.
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Since only continuity arguments are involved, the same result is true for iterates of any order p of P,
when compared to the iterates IIP of the circle map. Also, if II(x) has an attracting/repelling fixed
point with an eigenvalue of the linear part sufficiently far from unity, the eigenvalue of the linearization
of P around the corresponding fixed point is also smaller/larger than unity. It is easy to ascertain the
stability of eigenvalues of II equal to unity (saddle-node bifurcations) in the transition to the complete
mapping P, if one allows for a further degree of freedom: we take it to be the variable 3 of (7.6)%.
When varying 3, we assume the quantity X is held fixed. This is only approximately the same as
holding ¢ fixed: the departure is larger at smaller damping (see Fig.13). One can state:

Lemma 8.3 Let 2r — &6 > |X +7/2| > 6 > 0 and xo, PBo so that T(x) = Boll°(x) (cf.eq.(7.9),
%(x) = cos(x + X)) obeys:

0 oo
BoIl” (x0) = X0, 50@0(0) =1 (8.14)
Then, for q small enough, the set of equations
PA(A7X757Q) :A7 PX(A7X7B7Q) =X, det ’H_DP’ :O (815)

has a unique solution (A(q), x(q),B(q)) which tends to (R ¢, Xo, o) as ¢ — 0.

The argument is almost the same as in Lemma 8.1. In view of the continuity of P, and its derivatives
as ¢ — 0 it is true that: for any e > 0 we can find ¢g so that at fixed 3, for 0 < g < qo

|PA(A7XaB7Q) - RL,f| + |PX(A7XaB7q) - BHO(X” <e (816>
Ol p Ol p Ollp

|6A|+|8X|+\85|<e (8.17)
e oPy, oI’ *P,  L0°MI°
11 1I
X g X _p2l

for 0 < A < Ay, B— < B < B4 and all x. Further, the condition on ¥ in the statement of the Lemma
ensures that xo stays away from 0, i.e. II(x) > d > 0 in a domain (x,x+) x (f—,B+) containing
(X0, Bo),for some d > 0. If e < d/2, it follows from (8.16) that |Pa y 5,4 > d/2 > 0 on the same interval
in x and 8. As in Lemma 8.1, the first equation (8.15) determines for small ¢ and all x € [0,27] a
unique solution A(x, 5,q), with 9A/0x, OA/OB of O(q) and |A(x,B,q) — R f| = O(q) . With the
notation (similar to I1° in (8.14), cf.eq.(8.4b))

Py = BPY+qH(A, X, 5, %) (8.19)
the second equation (8.15) is:

X — qH(A(x, 8,4),x, 8,%)
P)%(X’ A(X7 B?q)’ q, 5)

In (8.20),PY depends on f3 also through the variable 3 (cf.egs.(8.10) and (8.4b)); from (8.10) it follows

that 9%/08 is O(A — Ry ), i.e. O(q). Since |Py| > d/2 > 0 and B8 > f_, it follows that the partial
derivative of the left hand side of (8.20) with respect to 8 is 1 — O(gq) so that (8.20) determines a

ﬁ_

=0 (8.20)

26The e-dependence of the factors Ry s, M in (7.7) is very mild and may be overlooked for all purposes; 3 is essentially
am-r/,yl/S
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function B(x,q) for x— < x < x4, with 938/9x = O(1). The third equation (8.15) may be written
after rearrangements:

aPY ( OPY Py OPY aPA> B OH 0Py OH 9P

= _q[axc‘?/\_aAax (8:21)

ax \ dx A  OA 9y

where we use 5 = (x, q). Since the derivatives of Py in (8.21) are O(q), the latter may be rewritten
as:

oPY
¢ TXX +0(q)| =1+ 0(q) (8.22)
From (8.20) and (8.22) we deduce:
oPY 0

Now, at ¢ = 0 eq.(8.23) has the solution x = xo. This solution is a simple zero of the combination
XOII? /Oy — TI° because its derivative y9%I1°/0x? is nonvanishing at yo. This is a consequence of
0’1 /0x* = —IIY and of the condition on ¥. Therefore, this combination is monotonical on an
interval (x_, x4) around xo, possibly included in the former, and acquires at the ends absolute values
larger than some d > 0, possibly smaller than the former. Choosing again e < d/2 we can find ¢ so
that, for ¢ < qo (i)the right hand side of (8.23) has opposite signs at x_, x+ and (ii)its derivative has
a constant sign on (x—_, x+) (as a consequence of the second equation in (8.18)). Thus there exists
only one solution x(q) for every ¢ sufficiently small and it approaches x¢ as ¢ — 0 . This leads then to
solutions A(x(q)), B(x(q)) with the properties announced in Lemma 8.3 and ends the argument.

Since now /3 changes with ¢, one may wonder about the values of the forcing I' (or ) above (below)
which we may set "™ = ¢ (and thus replace "‘small enough ¢"’" with "‘small enough €"’. According to
Lemma 8.3, for ¢ < qo, B(q) is contained in an interval [5_, 81]. For such values of 3, the solutions
k(e B) of the equation €°7 /4'/3 = § are at fixed € contained in an interval [x_(¢), 5. (¢)] which shrinks
(logarithmically) to 1/(87) as € — 0. It is thus contained in an interval [k, kas] of k-values. Tt is
enough to choose the upper limit of € so that €™ = q.

The invariant sets of P in the neighbourhood of (A(q), x(¢), 5(q)) may be described completely using
the central manifold theorem, in the manner presented in Guckenheimer & Holmes [1983] and Marsden
& McCracken [1976] . Following the instructions of these references, we may state?:

Lemma 8.4 Let ¥ be such that : 2m — 6 > |¥ + /2| > 6 > 0. For q small enough, there exists a
neighbourhood U x V' of (A(q), x(q), B(q)),

U:AIA =AMl <A} x{Ix=x(@l < B},  V:H{[f-B(g| <C}

with A,B,C independent of q such that : if B < B(q), B € V, U contains no invariant sets of ; if
B > B(q) the invariant set consists of two points; if 5 = (q), the only invariant set in U is (A(q), x(q))

To see this, we introduce new coordinates
G=A-Ag), &=x-x(@), &=8-5) (8.24)

centered at Zg = (A(q), x(¢), (q)). The mapping P may be locally approximated by a Taylor expan-
sion:

3 3
Pribi= > a&i+ > aib+ ..
= ==t \ (8.25)
- azby
Py i &= EPY(E0) + bi&i + (1 — o Voo + Y bij&ikj A+ ..

i>j=1

?"The exercise on p.25 of Marsden & McCracken [1976] is almost the same as this Lemma
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where a1, ay are O(q), az even of O(¢?) (cf.eq.(7.1a), where the dependence of 3 is concealed in X,
cf.also (8.4¢)), aj; are all of O(q),but nonvanishing(cf.eq.(7.1a)), PY(Zo) ~ II°(xo) # 0, the coefficient
of & is 1 — O(q) and the b;; are nonvanishing, as a consequence of the condition on 3, and of O(1).
For small ¢, the coefficient byy is approximately 9%11°/0x? # 0. Let then &7, &/ be new coordinates
linearly related to &, & so that the linear part in &1, & of (8.25) becomes diagonal. The first eigenvalue
is O(q); it is relevant that &7 = O(1)&1 + O(q)&2 so that the orders of magnitude in the transformed
system:

3
Pri&ul = ciéyl +agllsl + Y aiglEilé;l
i>j=1

5 (8.26)
Pyt &of = E3(PY(E0) + O(q) + &l + Y bigl&itéyl + ..
i>j=1
are preserved. In (8.26) we have set {3/ = &. We enlarge P by adding to (8.26):
Ps3: E31 = &31. (8.27)

The quantity as/ is O(q), baa/ = beg and the b;;/ are O(1). It is possible to find an approximation to the
central manifold of the enlarged P (eqns.(8.26),(8.27)) (the invariant manifold tangent to the subspace
of eigenvalue unity) around Z in the form (see Guckenheimer & Holmes [1983, p.136])

€11 = hy(&al, &31) = aga(Ea0)? + ansalésl + ass(€31) + ... (8.28)

The coefficients o;; are obtained by equating the coefficients of like powers of £2/, 3/ in the condition:

Pi(h1(&ar,830), 821, &30) = hp(Pa(hr(&at, &t  &31), &l €31), €31) (8.29)

It turns out that the ay; are all of O(q), as they are proportional to coefficients appearing in P;.
According to the center manifold theorem (see Marsden & McCracken [1976, p.19]) all points in a
(sufficiently small) neighbourhood U x V of Zy approach under iterations of P the center manifold,
which is itself invariant. Thus the only possible invariant sets of P are to be found by restricting the
action of P to it. Substituting then (eq.8.28) into the second equation (8.26) we obtain a description
of the bifurcations at = :

Pa(at, &) : Eol = E31(cos(x(q) + X) + O(q)) + E/(1 + bastésl) + baot(€21)> + O(q) x h.o.  (8.30a)

P3(&sr) : 1 = L3t (8.30b)

For ¢ small enough, eq.(8.30a) describes a saddle-node bifurcation: for 3/ > 0, the equation &/ =
752(52/, &sl), with P, restricted to the quadratic part has no solutions for small £3/; it has one double
zero for €3/ = 0 and two solutions for &3/ < 0. Thus saddle-node bifurcations of the circle map are
transferred indeed to the complete mapping P at least for small g, i.e. for small €.

We show that the same is true for flip bifurcations. In strict analogy to Lemma 8.3 it is true that:

Lemma 8.5 Let 2r — 6 > |¥ — /2| > § > 0 and xo, Bo obeying (cf.Lemma 8.3):

o1l
Bollo(x0) = xo, 5070()0(0) = -1 (8.31)
Then, for q small enough, the set of equations:
Paldx.q) =A, Py(Ax,9)=x,  det|[I+DP[=0 (8.32)

has a unique solution (A(q), x(q),B(q)) which tends to (Rr ¢, Xo,Po) as ¢ — 0.
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The argument is the same as in Lemma 8.3 with obvious changes of sign in (8.22) and (8.23). The
same transformations of variables as in Lemma 8.4 bring P locally in the form (8.26) with a minus
sign in front of & in the linear part of Py. We inquire next whether the flip bifurcations survive the
transition from one to two dimensions (from II to P):

Lemma 8.6 Let X obey: 2mr—0§ > |[X—7/2| > § > 0. For q small enough, there exists a neighbourhood
UV of (A(g), x(a), 8(a)), U : {IA — Alg)] < A}x{lx — x(@)| < B}, V : {|3 - Ba)| < C}, with 4,B,C
independent of q and such that : if B < B(q),B € V, U contains just one invariant set of PoP , which
is also an invariant set of P; if 5 > [(q) the invariant set of P consists of one fixed point and one
stable orbit of period two.

One may doubt a priori that this is the case, since pitchfork bifurcations (as present in the mapping
ITo1II) are not stable under perturbations in general. Nevertheless, the special features appearing from
the restriction to mappings of the form P o P allows a proof of the persistence of flip bifurcations when
one moves from II to P.

Expanding P around the point (A(q), x(q), 8(¢)) of Lemma 8.5 the mapping P o P may be written
with the notations of (8.24):

Pr & = ar&s + a2by + ann€l + a2é3 + a13618s + azséols + azsés + ...
P3 & = &+ biiél + biobiéo + bis&1&s + baslals + bssé3

+ d22283 + doas€3€s + daszball + ...
Pi &= &

(8.33)

where the a;,a;; are of O(q) or less, as > 0, aja = 0, the b;; are O(1), bay = 0, baz # 0 (as ¢ — 0
it approaches —0%I1/0B0x = 1/Bo; ) and terms of O(¢£3) must be taken into account (to describe the
pitchfork); the coefficient doge # 0 and has a nonzero limit as ¢ — 0, as a consequence of the conditions
on ¥. In (8.33) we extended P? through the addition of the identity concerning &3 (see Guckenheimer
& Holmes [1983]). Changing variables to:

ay

& =8+ &3, §ol = &2, §3 = &3 (8.34)

1-— ag
causes the linear term a1£3 to disappear in the transformed equations. One looks for an invariant
manifold of P? tangent to the plane &1/ = 0 in the form (8.28) above. From an equation analogous to
(8.29) one determines the coefficients a;; which turn out to be of O(q) or smaller. Replacing &; as a
function of &, &3 in the second equation (8.33) one obtains a description of the invariant sets in the
approximation (8.28) of the center manifold of the extended system (8.33):

Ba3&als + Bssés + Banobi + £30(83,663,65) + O(q) (&3 +..) =0 (8.35)

where Bas, Bss are corrections of O(q) to bag, bss of (8.33) and are of O(1), Bago is a correction of O(q)
to dago in (8.33), the magnitude of the coefficients of the other cubic terms is O(1); it is essential that
no terms with &2 appear, even of O(q): these would destroy the "‘pitchfork"’; there are terms of O(&3)
multiplied by O(q), but these are harmless. The prime on &2, &3 has been dropped in (8.35), in view of
(8.34). At &3 =0 (8.35) reduces to :

Ba22&5 + O(q)é3 = 0 (8.36)

which shows the triple zero at £ = 0 and another zero far away. A solution of (8.35) which is analytic
in £3 may be obtained formally by writing:

o = e1&3 + eals + ... (8.37)
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and identifying coefficients; one obtains e; = —Bss/Bas, etc. There exist also two other solutions
analytic in /&5 which are the continuations in &3 of the other zeroes of (8.36): letting in (8.35) &3 = 22
and substituting there:

Eo = fiz + fox® + ... (8.38)

one determines fi as one solution of:
Basfi + Baaaft =0 (8.39)

The solution f; = 0 leads to (8.37). The coefficients Bag,Bago are corrections of O(q) to the derivatives
0?11/0B0x, O311/0x> at (x0.Po): these are ~ —1/Bp,1 in turn. Thus, f; ~ i,B()_l/Q. This shows that
indeed, for &3 < 0 there exists just one solution of (8.35) but there are three solutions for {3 > 0, i.e.
a "‘pitchfork"’. This ends the argument for Lemma 8.6.

8.3. Conclusions

In the statements of Lemmas 8.3 - 8.6, the values of ¥ lying near the peaks of the saddle-node and flip
bifurcation curves (see Fig. 11) were excluded. With this exception, we can conclude this section with

Theorem 8.1 If B > [.(X) of Lemma 7.2, the invariant sets of the half - period Poincaré map
P(5,%, A, x) of Duffing’s equation consist, for sufficiently large I of fized points and periodic points
of period two only - with the possible exception of small neighbourhoods, vanishing as I' increases, of
points (8 = 1,% = +m/2). These invariant points are in one-to-one correspondence with those of the
circle map I1(B, x, X) of (7.9) and approach the latter as T — oo (¢ — 0). The bifurcation lines fr(X),
Bs(X) approach those of I1 in this limit.

The restriction to the domain of large 8 is artificial: one can extend the argument and show the
stability in the transition II = P(= P) of the period doubling cascade and - presumably - of the limiting
chaotic motion. This gives a natural explanation for the chaotic behaviour observed a long time ago
in the damped and forced Duffing oscillators. Theorem 8.1 also gives a complete understanding of the
regularities observed in the bifurcation pattern of Duffing’s equation at large forcing and (moderately)
high damping.

9. Comments and conclusions

It is apparent that an important ingredient in the justification of the bifurcation structure of eq.(1.1)
(or eq.(1.8)) is the sudden change of "‘natural"’ reference at t = 0 in the description of the motion. This
is brought about by the discontinuity occurring at t=0 when passing from the left hand reference X ()
to Xg(t) (see Fig.2). The continuation of X, (¢) to ¢t > 0 is oscillatory (see Fig.6) because (intuitively)
a particle moving for t<0 at the bottom of the potential well z#/4 — xsint (cf.eq.(1.8))cannot follow
the infinite velocity of the minimum at ¢ = 0. The particle behaves as if it had been subjected to a
"kick"’. In a series of papers by Parlitz [1993] and Parlitz et al. [1991a,b]|, the authors show that an
infinite sequence of bifurcation curves occur in a very simple "‘kick and twist model™’, described by
the differential equations (z = rcosa,y = rsina, d>0):

d
i= g =147 (9.1)
supplemented by a periodic "‘kick"’, i.e. a displacement of the y coordinate by an amount a at equally
spaced time intervals T. The control parameters are the amplitude a and the period T.
For Duffing-type equations Eilenberger & Schmidt [1992] give a simple and elegant argument that
for a real sudden change of the forcing at t=0 (obtained by replacing sint¢ on the right hand side of
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(1.8) by a step function) a nonlinear dependence of the restoring force on the displacement z(t) leads
naturally at sufficiently high damping to a (half-period) Poincaré map of the form (1.4) or (7.9), i.e.
to a "‘circle map"’. The latter describes accurately the bifurcation structure of the Duffing equation
at high forcing and damping. The critique to this argument is obviously that there is in (1.8) or
(1.9) no real discontinuous change of forcing (no real "‘kick"’[Eilenberger & Schmidt, 1992|)at t = 0:
the change of reference is only a convenient artefact. As is apparent from Section 6, see Fig.8 or
Fig. 9, the development of the circle map occurs actually in a short time interval 7 = O(1/7) near
t = 0. In the limit I' — oo this interval becomes infinitely short compared to the whole interval
0,7/2] (actually O(1/In(1/e) compared to it) but is infinitely long (O(1/(%®In1/¢))) compared to
the boundary layer, where 7 (cf.eq.(1.18)) is O(1) (this is the -somewhat enlarged - transition region
of Schmidt & Eilenberger [1998] where the inner and outer expansions are matched, see Sect. 3).

The following is a qualitative argument for the appearance of the circle map as an approximation
to the half-period Poincaré map - relating t = —7w/2 to t = 7/2 -, as it emerges from the discussion
in Sects. 5 and 6. The discussion ignores the difficulties related to the changes of variable between 7
and 0, r of (4.2) and assumes they can be performed all the way down to ¢ = 0. In the time interval
[—7/2, —710e%/87%], 5 > 0 the motion around the left hand reference solution is essentially harmonic in
the variable 61, eq.(4.2) i.e. with a period independent of the amplitude. According to Lemma 5.2
there exists an additional phase proportional to the square of the amplitude at ¢ = —7/2 which is a
cause of the distortions shown in Fig.5. To these, we have to add the displacements appearing when
we get into the boundary layer down to ¢ = 0 where the motion of solutions in the vicinity of X (¢) is
approximately described by the linear equation (5.39).Fig.5 testifies however that the distortion of the
small disk at t = —7/2 in the ¢t = 0 plane is not a huge effect, so that we make the rough approximation
that harmonic motion is dominant and thus all initial phases 1); - measured around X (t) at t = —7/2
- have increased at ¢ = 0 by the same amount a, independent of the amplitude:

P(0) =Y +a (9.2)

At ¢t > 0 the motion consists essentially of rotations around the right hand reference solution Xg(¢).,
The angular velocity has an harmonic (amplitude-independent) term in the variable 0, eq.(4.2)
and (to a first approximation) a second term which decreases with 6 like 1 /HBR/ * and is Propor-
tional to the square of the amplitude (of the distance from the origin in the w,dw/df plane, see
eqs.(6.15a),(refeq:6.14b). This latter term is the prominent effect of the nonlinearities in (1.1). Tts
effect is limited to a time 7 < 1/+, after which the motion is essentially harmonic. The final value v
of the angle at ¢t = /2 is the value of the rotation angle around Xg(t) between ¢ = 0 and 7/2. Thus,
for a solution rotating at distance R from Xx(t) (with R measured in units of £/8),

A +BR2
v

The first term is common to all solutions and is the effect of the harmonic part: 1/4/¢ is the order of
magnitude of t = /2 when expressed in the variable 0g, eq.(4.2). The second term is the integral over

+C (9.3)

0;23/4 up to 7 = 1/7; since O ~ 743 a time 7 = 1/ corresponds to Oz ~ 1/7*3. The third term is
the contribution to the rotation angle of times larger than 1/ and is again independent of the chosen
solution.

The continuation to ¢t > 0 of the left hand reference solution X, (¢) also rotates around Xgr(t) at a
distance Ry, from it (cf.Fig.6) and achieves at ¢ = 7/2 a total rotation (9.3) given by an angle denoted
by 1 1. Neighbouring solutions with a distance Ry, + dR to Xpg(t) acquire a rotation angle:

2BRLOR

Yi(0R) =Yy + 173 (9.4)
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We assume Ry is constant down to ¢ = 0. A solution starting at ¢t = —m/2 close enough (i.e.
O(e3/16+£7/2))  ¢f. Theorem 4.1) to X (t) with an angle ¢; to the z-axis ends up at ¢ = 0 in a disk of
radius 7 = O(e"™t1/8) = O(e=27!/8) around X, (cf.eqns.(5.52a),(5.52b)) and in a position enclosing
an angle ¥(0), eq.(9.2) with the z-axis. Its distance to Xg(0) is:

Ry, +6R= \/R% + 724+ 2Rprcos(v + a) =~ Ry + rcos(¢; + a) (9.5)

which gives an estimate of dr. Substituting in (9.4) one obtains the circle map, which gives the angle
Yy at t = 7/2 in terms of ¥; at t = —7/2:

const x g™
Yy =1rL+ BT cos(¥; + a) (9.6)

This mapping is equivalent to the form (1.4) or (7.9) (cf.Sect.7.1).The whole paper is actually devoted
to the justification of this qualitative picture in a correct manner.
The role of the nonlinearities may be appreciated if one compares eq.(1.8) with a (possible) linear
version of it:
i + 2ud + x = (sint)'/3 (9.7)

which has, for all e, a unique periodic solution. One can perform for it the same analysis with inner
and outer expansion as for (1.8)28. The difference u(t) = x(t) — z(t) to a corresponding reference
solution z 1, (t) obeys the equation of a linear damped harmonic oscillator;the latter transforms a small
disk u? + 1%/e < r? at t = —7/2 into a disk of radius smaller by a factor "™ at t = 7/2 (around a
corresponding reference x(t)), almost without change of shape (to first order in p/1/€). The difference
in rotation angles for different amplitudes, as expressed by (9.4) in the nonlinear case, is zero.

The author believes it is a special virtue of the averaging method of Bogolyubov & Mitropolski
[1961] that it allows a systematic and easily interpretable treatment of the nonharmonic behaviour in
the small |¢| domain (the "‘transition region"’ of Schmidt & Eilenberger [1998]). In fact, use of this
method makes up the main difference between the treatment of my earlier internal report[1990| and
of the present work to that of the papers of G.Eilenberger and K.Schmidt[1992],[1998]. The analysis
of these authors is based on the adiabatic theorem of classical mechanics [Arnold, 1978|, [Landau &
Lifshitz, 1960|, applied to the motion described by eq.(1.9) around the reference ("‘creeping"’) solutions
X1 (t\/€), Xr(t\/)? It is not so easy to extend the adiabatic approximation to the region of small |¢|
in such a manner that it matches there to the boundary layer description of the motion, given to
zeroth order by eq.(3.24a). This is done by a method of time-dependent canonical transformations,
specially devised fot this purpose and presented in the Appendix B of Schmidt & Eilenberger [1998].
The procedure is claimed to be numerically successful but it is difficult to identify in it the various
terms given by the averaging method of Sects. 5.1 and 6.

Both the work of G.Eilenberger and K.Schmidt[1992; 1998] and the present one (with its earlier ver-
sion) rely on a Taylor expansion to first (or second order) of the Poincaré map around the continuation
of the left hand reference solution to ¢ > 0.This statement may not be obviously valid for the work
of Eilenberger & Schmidt because of the different formulation of the Poincaré map, but a moment’s
consideration shows that it is implied in eqns.(5.8),(5.9) of Eilenberger & Schmidt [1992] and in eq.(24)
of Schmidt & Eilenberger [1998] . The reason why a Taylor expansion is expected to be sufficient is
that the magnitude of the small disk of radius e"™/2+3/16 ig further reduced by a factor®® ¢57/2 at ¢t = 0,
so that one is interested in a "‘really"’” small neighbourhood of the continuation of X (¢) at ¢ > 0.

For given A and T in the large A —T region considered here (or £ and p in the corresponding domain)
one determines numerically the coefficients of this expansion (as in Schmidt & Eilenberger [1998]) or

28inner variables X, 7 may be defined through z = eV/OX t =21

*the latter are introduced in a manner similar to this paper and to the work of Byatt-Smith [1987]
30the factor £3/16 disappears through rescaling and Liouville transformation
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integrates the variational equation around X (t) from ¢ = 0 to ¢t = /2, as analyzed (in principle) in this
work (and in the earlier report);the advantage of the latter method is that the averaging transformations
allow several statements about the solutions (see Sect.6.2), especially about their behaviour as e — 0.
Really "‘universal"™ numerical constants appear only in this limit (cf.eqns.(6.45),(6.46)). They are
determined by the boundary layer equations in the limit v — 0.This paper devotes much attention
to the justification of these limits (see Lemma 6.4), the reason being that not all of them exist: see
eqns.(6.55),(6.56). It is in fact the equilibrium between this divergence and the magnitude of the small
disk at t = 0 (see Fig. 5) which is responsible for the onset of bifurcations as the damping decreases at
fixed I". Unfortunately a similar discussion appears to be absent in the work of Eilenberger & Schmidt.

It is remarkable that the circle map - which comes from the first order Taylor expansion - turns
out, according to the numerical evidence of Schmidt & Eilenberger [1998], to have a large domain of
validity - at least qualitatively - in the I' — A plane, not limited to values of the damping increasing
logarithmically with the forcing (as assumed in this paper). It is an open question to what extent
(down to which value of the damping A) the very rich bifurcation structure of the circle map is indeed
transferred to the highly complex bifurcation diagram of the Duffing equation in the I' — A plane.
The arguments of Sect.8.1 only show that the transfer of the upper part of the bifurcation curves does
occur asymptotically in I'.
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A. Appendix A: A Bound on the Increase of F(f) in the Interval
(€%, 27)

In this Appendiz we drop the index R on Or, wr, Oor, gr because the variables for the interval (—m/2,0)
do not occur at all. The change of variables W = wk(#) transforms equation (4.13) into:

d*W 2 dkdW w3

awo 2 akalv 2 WV _

o~ T gp g T WA GO) + W S =0 (A1)
where ) )
2 (dk\® 1d%

60 =90+ (%) ~ 1300 (A2)

This function decreases like 1/62 for large 0, independently of the choice of p, eq.(4.11) in paragraph
4.5. The energy associated to (A.1):

2 2 3 4
£(0) = % (%) + Mgy + 2 (A3)

2
evolves in time according to:

€ _W2dG 3 (dW)*
d9 2 df 40 \ db
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where we have used the approximation k() ~ £°?/2 /t'/2 for small t. The energy £ is bounded because,
using W?2 < 6 (cf.eq.(4.16)), eq.(A.4) leads to the inequality:

dlné&
do

const

e (A5)

which means £ < const€ (). This is still a very weak bound for w(6): it simply implies that |w(8)| <
const/k(0) i.e. using (4.23)

3/8
lw(B)| < const\/E(0) (990) < const\/E(0o)(0/60)%/5. (A.6)

We consider now in more detail the negative "‘damping "* term in (A.4): by comparing with the
motion W¢(6) in the time independent potential:

VW)= + 4 (A7)

we shall show that, in fact, the energy £ decreases to zero like const/0%, for some s > 0. Let T'(€) be
the period of the motion with energy £ in the potential V(WW), eq.(A.7) and let Thy = supT'(E) over
all £ > 0 32.Let further T be a time interval obeying T' > qT)s for some integer q>1. The following is
useful:

Statement A.1 There exists a constant kr, 0 < kp < 1 so that the inequality:

(%) 2 >E& (A.8)

is fulfilled by the motion W (8) with energy £ in the fized potential V. (W), eq.(A.7) during a time k1T,
independently of the enerqy of the motion.

Indeed, we evaluate first the fraction k(€) of a period of the motion with energy £ during which (A.8)
is obeyed. Let first £ > 1:

ooy 1(E/2)
k(&) = G (A.9)
ith
W e = W(+,fE) dW 1 w(+,A) du
(7€) = /W(,fg) VE—V(W)  EVA /u(,A) V1= 22u2/2 — M3 /3 — ut/12

where W(—/+,€&) are the two real roots of the equation V(W) = f€, u(—/+, ) are the roots of
the corresponding equation after changing variables to W = u&EV/4, f = 1/2,1 and X = 1/81/4. The
function k(E(\)) is a continuous, strictly positive function of A on the closed interval [0, 1] and achieves
there its smallest value which is different from zero (and less than 1).The reasoning may be repeated
for £ < 1, with the change of variables W = u€'/2. Let the minimum of k(&) over the whole range
£ > 0 be denoted by ky,. The 6-time interval T contains r > ¢ complete periods of the motion with
energy &, so that the time interval in which (A.8) is obeyed is at least 7k, T/(r 4+ 1). Then, choosing:

statement A.1 is verified.

3lcf. eqn.(4.23); in this section we drop the index R
BTE > 0as £ — o
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Now, consider the two equations (A.1) and:

dZWf 2 4 WJ::’
Wy + Wy =0 A.10
gz T 3 (4.10)
and motions W (), obeying (A.1), and Wy (), obeying (A.10), such that they have the same initial
conditions at some "‘initial"’ #-time 6; > 6y. If we subtract (A.10) from (A.1), use the notations:
awy dw
p=Wr—=W, =" a0 n=lpl+lol, (A11)
and integrate the first order differential equations equivalent to (A.1) and (A.10) from 6; to 6, we
obtain the inequality 33

0 0 0
ng/ nd0+/ n\W+Wf\d9+/ Q\W2+WWf+WJ?|d9
0: 0; 0i (A.12)

/ 3|dW|d0+/ WG(6)|d

Because the energy & of the "‘true"” motion W () is bounded, all terms containing W, W explicitly
are bounded by constants, so that we can represent (A.12) by:

0 0 1 0
77<M/9 nd0+M1/9 (9+G(6))d05M/9 ndf + My H(6) (A13)

i

with M, M, suitable constants and H(f) monotonically increasing and positive, H(6;) = 0. For
0; <0 <0, +T, HO) < const x T/0;. Gronwall’s inequality [Bellman, 1953] p.35, [Coddington &
Levinson, 1955|,p.37 implies then, for §; < 0 < 6, + T

T
n(0) < MiH(0)exp(MT) < conste— (A.14)
i
where the constant is independent of #;. We estimate now the energy loss AE of the "‘true"” motion
W(0) in a”0 — time"'T:

9+T3 2 9i+T3 de2
A 9 = = Z222)
[ L3 )

0;+T 3 AW de 3
/ei 4/6 ((d&) ( a0 ) ) (kr T)gf(ﬁ) (A.15)
- CoVE /9 i+T d0 > kTT4w3+T)5 Co 922 VE

In the first step we used statement A.1 and inequalities like (4.16) to bound |dW/df|, |dW/df| from
above. Eqn.(A.14) was used in the second step. The total change of energy £(0;+1') — £(0;) is obtained
by adding the increase due to the first term in (A.2). This latter is bounded by C1T x £(6;)/63. One
verifies that, if 8; is sufficiently large, the total change of energy is negative. We may even require that
it be larger in absolute value than (3/4)k1ET/0;, for a number 0 < k; < k7. This gives a lower bound
B on the energies for which this may occur (6;/(6; +7T) ~ 1):

4CoT 1
= - Al
VE> V(B =5 K — k1 — 4C1 /302 (A.16)

3377: 0 at 0;
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This bound depends on ; and decreases like 1/ 912 .We may assume that the maximal energy &, at 6;
is such that (A.16) is satisfied and that even, say,>*:

Em(0;) > 28 (A.17)

Then at 0 = 6; + T the energies £ of all motions for which (A.16) is true at 6; have decreased at least
to (1 — (3/4)k1T/0;), and so has the maximal

T
Emn(0i +T) = Em(6:)(1 — Z L

) (A.18)

This is a bound for the energies of all motions with £(6;) < &,,(0;): indeed, all those motions for which
the inequality (A.16) at 6; is not obeyed cannot acquire by (A.5) in the 6-time T sufficient energy to
get over &,,(0; + T), in view of the condition (A.17) if #; is large enough. Further, the decrease of
the maximal energy &p,(6) in the interval (6;,6; + T') is less than that of the bound B in the same
O-interval: at 6; + T the latter is, according to (A.16)

B(0; + T) ~ B(6;)(1 — 27/6;) (A.19)

Thus, (A.17) is obeyed also at §; + T with the maximal energy (A.18) and the bound B of (A.19);we
may then proceed to 0; + 27T, etc. and conclude that, after n steps, the maximal energy is bounded by:

3 kT
40; + 5T

(6 4+ 1) = E(0) [ (1 ) (A.20)
j=1

For large n, the product in (A.20) behaves like (nT/6;)~3%1/% ~ (0/6;)~3%1/4. We conclude that the
maximal energy &, decreases like (0/6;)™", with 0 < r < 1. As a consequence, the weak bound on
|w(@)| contained in the first inequality of (A.6) may be now strengthened to:

3/8—r/2
|lw(B)| < const <9> (A.21)

We return now to the energy E(6) of the original equation (4.13) and to the inequality (4.25):

dE 1 g dk o\ /832 1\ 1

Integration of (A.22) leads to:

which justifies our assertion in eq.(4.27)(with s = 3r/2).

B. The Inversion of the Averaging Transformations

A simple proof is offered that the averaging transformations (5.7a), (5.7b) (or (5.11a), (5.11b)) leading
from (R, ¢) to (R1, ¢1) (or from the latter to (R, ¢2)) are invertible, if the quantity h(6r), eqns.(4.9),
(5.3) is small enough. This is achieved either for small enough e or large enough |0;|. In Section
6 the quantity h(fr) is replaced in the averaging transformations by k(6g), which is monotonically

34it is at our disposal to increase £(6;), if necessary
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decreasing like 9;{3/ ¥ and may be thus made small for large 0g. We show that the transformation
(5.7a),(5.7b) is one-to-one from a strip {0 < R < M} in the (R, ¢) plane to its domain of values in
(R1,¢1), for small h (or k). Here M is the bound on the values of R established in Section 4.7(see
Corollary 4.1).

From (5.7a),(5.7b), taking derivatives at fixed 61 one verifies that, for (small) positive constants
Cij,1,5 = 1,2, it is true that:
8R1 aRl

| ‘ >1-— Cuh(eL) | | < Clgh(HL) (B.la)

3@251 0p1

Assume now two different points (Rg, ¢q), (Rb,¢b) of the (R, ¢) plane were mapped to the same
(R1,¢1). Consider then the two functions of s, 0 < s <1:

‘ < Cth(QL) | | >1-— CQQh(QL) (B.lb)

Ri(s) = Ry (R, + sDcos a, ¢, + sDsin ), $1(t) = ¢1(Ry + sD cos a, po + sDsin av) (B.2)

where D is the distance between the two points and tan « is the slope of the line joining them. Since the
two functions Ry(s), <z~51(s) assume the same value at s = 0 and s = 1, there exist values 0 < sg,s4 < 1
so that their derivatives with respect to s vanish there. Suppose « is such that, e.g. [cosa| > 1/v/2.
Then, using (B.1a):

d
|ﬁ(sR)| D\—cos | — D\aailsina]

(B.3)

> D( — C11hM — C1ohM?)

7
It is clear that for A small enough, the right hand side of (B.3) does not vanish, which contradicts the
fact that R;(s) assumes the same value at s = 0 and 1.

If |cosa| < 1/v/2, we use the function ¢;(s) of (B.2) and relation (B.1b) and reach the same
conclusion.

In calculations, the inversion is achieved by expanding R(R1, ¢1), d(R1,¢1) in powers of h (cf.eqns.
(5.9a), (5.9b)).

C. The Solutions of the Variational Equation and the WKB
Approximation

The following is an adaptation to the present situation of procedures that are common in the dis-
cussion of the WKB method (see, e.g.Langer [1949] and any classical book on differential equations,
e.g.Coddington & Levinson [1955])

C.1. The existence of some special solutions with WKB asymptotics

Consider the WKB functions (5.40):

Vi) (r,e) =

c,s

31/4
S {cos /sin} (/ 2(r,e)Y2dr) (C.1)
for some 7, < 0. The functions w. (0, 7,) = 51/4‘/(:(,(;5) are the solutions cos(6 — 6,), sin(6 — 60,) of the
equation

d*w

0
W +w = 0, 0= —/T El/Q(T/)dT/ (C2)
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and® 0, = () . The same changes of dependent and independent variable transform the variational
equation (5.39) into

R w(1+GO) =0, w=z"Yv (C.3)

with? . 5 (dZ/dr)?  d*T)dr?
Y= = = (C4)
Solutions of (C.3) which assume at 7 = —£~° the values and derivatives of w, s are obtained using the

method of variation of paramaters as the unique solutions of the linear integral equation:(@(a‘*&) ~
463
€

0
We,s = We,s + / G(6/) sin(f — 1)1, (01)dor (C.5)

c—46/3

Since G(0) ~ 1/62, the desired solution of (C.5) may be obtained by iteration at large || starting from
We,s; since its values and derivative are bounded for |0| sufficiently large (C.5), implies that, for such 6,

)
0]

dies — dwegs

dé df

|(We,s — we,s)(0)], (C.6)

Reverting to the variable 7, to the original Vc(fsw) of (C.1) and to the sought solutions V, s(7, ) of (5.39):

We,s(0)

Ves(7(0),¢) = 2(r(0),2)/4 (C.7)
we may state that, for all |7| sufficiently large (i.e. even larger than ¢~°):
C Vs VS C
_ 1/ (as) oS s o

where we have used df/dr ~ /3. Eq.(C.8) shows in what sense Ves(T) asymptotically approach

V(@5)(7) The solutions V, s obtained by (C.5) for large |7| may be extended down to 7 = 0.

C.2. The limits — 0

The solutions V, s obtained above depend on the chosen value of €. It is, however, plausible, as shown
in paragraph 5.3 (cf.eq.(5.42)) that they approach a limit as ¢ — 0. Indeed, on an interval [—~%,0]
with & = 3r/8 (cf.eq.(5.22)) the difference |1 () — noor(7)| tends to zero as e — 0. The function G,
eq.(C.4) depends on € through nr(7) (cf.5.41), is well defined for ¢ = 0 (replacing nr by noor) and
eqn.(C.5) has a formal limit for ¢ = 0:

6 ~
e.s(0,0) = o5 (6) + / G(01,0) sin(8 — 0o (61, 0)d61 (C.9)

The solution @, 4(#,0) of (C.9) may be obtained by iteration and is bounded for large 6; we may
estimate at a fized value of 6 its departure from the solution w. (6, ) of (C.5) by Gronwall’s Lemma as

35The definition of @ in (C.2) differs from the one of 0y in (4.2) by the implicit consideration of the term 2 in the
definition of = in (5.41)
36the function G is equal to the first two terms in (4.10) if one uses the approximation (5.41) for Z(r,¢)
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follows: we subtract (C.9) from (C.5), separate out the T-interval (—oo, —¢~%) and estimate A, s(0) =
Wes(0,2) — s (6, 0):

6—45/3 _ 7] _ ~
| At s(0)] < const x / G(01,0)d0r + const x / |G(61,0) — G(01,¢)|dbr
3

—00 —48/3

0 (C.10)
+ / G(01,¢)| At s (61)|d6r

_—45/3

Since G < C/62, the first term is bounded by const x %/3. Using (C.4) and the expansions
(3.9),(3.11),(cf.eq.(3.34)) one verifies that:

3/4

~ ’y E
|G(0,e) — G(0,0)] = O(m, m)

so that eqn.(C.10) may be rewritten in short:
- 4 1
AiealB) < @ +C [ IAa(on|dsy (1)
_g—48/3 or

where C(¢) tends to zero when & — 0. Gronwall’s Lemma|Bellman, 1953],[Coddington & Levinson,
1955],|Guckenheimer & Holmes, 1983|,ch.IV shows that

6
|A@(6)] < C(e) exp( / o e%) < Cy(e) (C.12)

where C(g) vanishes as € tends to zero. This shows that, as announced, if the value of 6 is kept un-
changed, we s(6, €) approach w. (0, = 0) as ¢ — 0. The same is true for the derivatives dw, s/df(0,¢).
However, this does not yet imply that this limit exists at fired 7: indeed the relation (C.2) defining 6
in terms of 7 depends through Z | eqn.(5.41), on ¢, and if 7 is fixed, 0(7, ) is different from 6(7,e = 0).
We estimate the difference Af(7,e) between the 6-values corresponding to the same 7 at € and at
e=0:

.

(E(r1,€) = E(r1,0))drs = O (5. 6/417) (C.13)
T

A9 = 0(r,e) — 0(r,0) = /

70

where we have used the expansions (3.9),(3.11) to evaluate the integral. This difference vanishes as
e — 0 for |7| < e~ with the choice of § in (C.13). We can now write, using 6. = 6(r,¢), § = 0(,0)

‘@6,5(7_7 5) - wc,s(7_> O)’ < |u~)c,s(967 5) - wc,s(ea 0)‘ + ’wc,s(ea 0) - wc,s(éa 0)| =T+ 1> (014)

The first term in (C.14) is the difference at fized 6 and vanishes as ¢ — 0, according to (C.12). For the
second term we use the estimate (C.14) of Af and the integral equation (C.9):

0 .
Ty <|wes(8:) — wes(0)] + G(6/)(sin(f; — 1) — sin(0 — 61w, s(61,0)dor
) o (C.15)
+ [ G(6r)sin(f — 01)d,, s(61,0)d6r
0

All terms in (C.15) may be majorized by const x |6 — 0| so that, as announced, at any fixed 7 in
[79,0] , the solutions of (C.5) approach those of (C.9) as e — 0.

65



C.3. The difference of two solutions of the variational equation

We need sometimes an estimate of the difference of two solutions V;(7),(i = 1,2) of the variational
equation on the whole interval [—79, 0], knowing the difference of their initial values (o, 3;), i = 1,2
at 7 = —e 9. Let w;(0) = V;E/* be then the solutions corresponding to them of two equations like
(C.5),containing suitable initial conditions at 7 = —e~°. These latter, which we call & = w(—e~?),

B = dw/df(—=~°) are obtained from (e, B;) through:
. 3-5/4
&y = 3/ 40ue /0 B = 371/4e0/6p, 4 = £T0/6, (C.16)
9 1 (2 2 (]

Subtracting the two equations (C.5) corresponding to w;, i = 1,2 one obtains with an obvious notation:
0

Aw(0) = Adw(0) + Apws(0) + / G(61)sin(0 — 61) Aw(6r)dor (C.17)

_—45/3

In a well known manner, from (C.17) and the boundedness of we, ws, Gronwall’s Lemma [Bellman,
1953],|Coddington & Levinson, 1955 implies that:

dw

|Aw(8)], Ad@(e)‘ = O(max(Ad, AB)) (C.18)

The estimate (C.18) holds as long as ZE # 0, in our case down to 7 = 0. Reverting to the original V;(7)
and noticing that for finite 7, Z(7) is finite, together with its derivative, we conclude that the same
estimate (C.18) is true also for the differences of V;,dV;/dr. Using (C.16):

av

AV ()], |A——(7)] = O(max(Aae %6, ABe%/6)) (C.19)

D. The Limit of Ry ¢(¢) for ¢ — 0

We show that the values Ry, f(e) = R(e,t(0) = 7/2) obtained through the solution of (6.9a) tend to a
limit Ry, ;(0) as € — 0. The latter is the asymptotic value of the solution obtained by setting formally
e =01n (6.92),(6.9b), i.e. with the replacements in k(6) indicated in Lemma 6.1:

dRio _ 7 Rio(9) Rio(0) .
Dt 2 3 . . 3
do 216 7(0)3/3 in(220) + 47 (0)1/2 (sin 29 + sin 329) 1)
Rpo(0)° )3 sin 4z
+ 127(0) (sin2zp + 5 )
dér.o 7 ‘ Rpo(0) , ‘
70 :2167'(9)8/3 (1+cos2z)+ W(?) cos zp + cos 32p) o)
1 RL’O(G)Q 3 1 :
12 ) (2+2cos2z0+2cos4z0)

where we have used the limiting forms (see eqns. (4.10), (6.7)) g(8) ~ (7/108)7(0)~%/3, k(0) ~
1/7(0)"/? and 29 = 0 + ¢1,0(0). In (D.1a), (D.1b), one uses 7(6) as determined from :

3v3 3v3
o(r) = 33 (s iy & 33 s (D.2)
4 4
where the last approximation is true for large 7. In this domain,
40 3/4
0)~ | — D.3
0= (%) s
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We perform now on equations (D.1a),(D.1b) the same "‘averaging"’ transformations as in Sect.5 and
"eliminate"’ successively terms in 1/03/8 and 1/93/4. At this latter stage, there appear in the equation
for ¢, o secular terms, which may diverge as  — oo. It is convenient for the following to continue this
procedure and eliminate further terms in 1/ 0°/% at which stage it becomes apparent that further secular
terms for ¢1, o occur to O(1/6%/2), but no such terms occur for Ry o. A further transformation to remove
terms in dk/df ~ 1/0'1/8 leads also in the equation for Ry o to secular terms of O(kdk/df) = O(1/07/*).
None of these terms is divergent as 6 — oco. They contribute finite quantities to the phase ¢ . If we
denote by Rar0(0), ¢ar,0(6) the dependent variables obtained after these four transformations, we find

that these obey equations like:
dR4r,0

yT7 = 0(07%/?) (D.4a)
de 7 (3V3 Mg ()2
=5 () T oo .t

In writing these equations, we have used the fact that, according to Sect.4, Ry o is bounded for all
0 and that all other terms, coming from ¢(#) and the derivatives of k(#) fall off even quicker with 6.
Integrating (D.4a) between two values #; and 02 we conclude that:

|R4L70(92) - R4L70(91)| S COHSt(@;l/Q — 92_1/2) (D.5)

Since for a sequence of points 6, — oo the differences between any two terms Rar, 0(6y), Rar0(0m)
tends to zero when n,m — oo it follows that the sequence Ry, (0,) approaches a limit, which we call
Ry, £(0). We return now step by step to the original variable Ry, () by inverting the transformations
leading to R4z, 0; these transformations are such that the differences between R;1 o and R;y o decrease
to zero as § — oo so that we conclude that Ry, o(6) approaches the same limit Ry, ¢(0).

Further, for a finite value of e, for which 6(t = 7/2) = const/+/e, we perform the same transforma-
tions to obtain equations similar to (D.4a) and (D.4b), with the difference that on the right hand side
we have powers of k(6), and its product with derivatives or with g(0):

dRyre 4
AL _ Ok + ) (D.6a)
dpares T 27 (2 4
ALt — L {RLo(07K(0) +O(K + g) (D.6b)

It is necessary to keep the terms with ¢(#) because k(6) falls off exponentially for time scales of O(1)
and thus may become smaller than g(6), which settles to a value of O(e(In(1/¢))? after falling off like
O(072) when ¢ = o(1). Integrating (D.6a) between a sufficiently large value of 0 and 05 = 0(t = 7/2)
we obtain:

0y
|Rar(0f) — Rarc(0)] < ConSt/e (k(0)* + g(8))db (D.7)

If we choose |7| > 79 for 0 < § < 3/8, the integrals in eqn.(D.7) are less than const x £29/3; if § = 3/8
(i.e.t = O(1)), they are even less than const\/z(In(1/¢))? (the terms with g(#) are dominant).

Thus, we must now show that the difference of the solutions of the limiting equations (D.4a) and
(D.4b) to those of the exact equations (D.6a) and (D.6b) at such values of 6 vanishes as e — 0. To this
end, we write out (D.4a), (D.4b), (D.6a), (D.6b) in more detail (the precise values of the coefficients
may be obtained from an algebraic manipulation program, but they are of no importance for the
present purpose). For instance, (D.6a) reads :

dRy4r, ¢
do

= k(0)* R(0)°P1(2) + ... (D.8)
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where P;(z) is a trigonometric polynomial of z = 6 + ¢ .(¢). The further terms contain higher
powers of k(#) and products of k(6) or its derivatives with g(#). Equation (D.4a) is similar: the same
polynomials in z occur, but (as in (D.1a),(D.1b)),XRr(t) is replaced by the leading term of the inner
expansion (3.23), i.e. for large 0, k(A) ~ const/63/3. From eqns.(3.9),(3.25) we see that, for large 7,
the difference:

5 7
na(r) — 713 = 0 (53/477/3, W> (D.9)

Equation (D.9) allows us to estimate the differences between the various coefficients of eqn.(D.8) and
its analogon (D.4a). We notice that the differences have to be estimated at a fixed value of 6, which
corresponds to different values of 7 denoted by 7(0,8), 7(¢,0) in turn, in the situations € = 0 and finite
e (cf.also Appendix C, eq.(C.13)). The value of 7 corresponding to € at e = 0 is given by (D.3) but
for finite ¢ it is the solution of

0=/3 / () drr = ?’f#/?)u +0(3/472)) (D.10)
T0

where we have used the estimate (D.9) for ng(7). For small € and 7 < ¢7° , § < 3/8,0ne obtains:
7(g,0) = 7(0,0) (1 + O(%/*7(0,6)?)) (D.11)
Using this in (D.9) one gets an estimate:
nr(7(e,0)) = 7(0,0)*(1 + 0(e¥*7(0,0)?)) (D.12)

which shows that in evaluating orders of magnitudes of differences at fixed 6 one may replace 7(e, 0)
by 7(0,60) of (D.3). Let now:

AR4(9) = R4L75(9) — R4L70(9) AR(Q) = RL7€((9) — RL,O(Q) (D.13a)

_ 7 9
Par,e(0) = dare(0) + 57 /0 k(0)’Ry(0)%do (D.13b)

Aps(0) = par(0) — daro(0) Ap(0) = or(0) — dr.0(0) (D.13¢)

and gEL,g be related to ¢r . by (6.12). Subtracting from each other equations like (D.8) and their
counterparts for ¢ = 0 and using the uniform boundedness with respect to € of R, (#) one obtains

dARyy,

5 < constA(k(0)*) + a1(0)AR + by (6)A¢ (D.14a)
dAC;Z‘*L < constA(k(0)*) + az(0) ARy + by () Agp (D.14b)
_ 7 0
Agy < Agy + 24A/ k(0)*Rr(0)*do (D.14c)
0

In equations (D.14a), (D.14b), the functions a;(6),b;(f) are sums over the various #— dependent
coefficients in (D.6a),(D.6b) multiplied by constants obtained from the simple estimates |P;(z)| < const.
As long as t is confined to an interval (/% < t < C.),C. — 0 as ¢ — 0, the dominant term is of
O(k*) = O(#~3/?), so that we may assume this is the order of magnitude of the a;(6),b;(#) in (D.14a),

(D.14b). From a repeated application of the "‘inverse"’ eqns. (5.9a),(5.9b) we may express AR, A¢p,
in terms of ARyy,A¢4r, through:

ARy = AR4L(1 + O(k(@))) + A¢4L0(k(9)) + O(Ak(@)) (D.15a)

Apr = ARy O(k()) + Adur(1 + O(k(8))) + O(AK(9)) (D.15b)
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Upon substitution in (D.14a),(D.14b), one verifies that the estimates remain unchanged if we replace
ARy, Apr by ARyp, Agyr, and also the order of magnitude of the coefficients is preserved (we keep the
notation unchanged). To replace further A¢4r, by A¢sr, we need a bound on the integral in (D.14c).
If M is a bound on Ry, Rro we obtain, using (D.15a),(D.15b):

(4 0 0
/ A(K*Rp)?d6r < M? / (Ak)2d(0r) + 2M / k2 ARy (07)d6r
0 0 0

6 0 6
< M? / (Ak)2d(6r) + C4 / K2AR,1dOr + Cs / k2 A¢ardor+ (D.16)
0 0 0

0 01
C3 / k6n3der [ A(K*R%)don
0 0

with C1, Cy, Cs constants pertaining to the O() terms in (D.15a),(D.15b). If we invert the order of
integration in the last term and realize that, for a sufficiently high 7 it is true that, for all 0 < 67 < 6:

G 6 )
1-— Cg/ E(Om)3dom > 1 — Cg/ E3don > 1 — ?—;6 > const > 0 (D.17)
o1 0 To

we may conclude that:

0 0 0 0
/ A(K*R%)d6r < const ( / (Ak)?d6r + / k> ARypdfr + / k3A¢34Lde/> (D.18)
0 0 0 0

This allows us to obtain inequalities like (D.14a), (D.14b) only in terms of R4z, ¢4r. We integrate
now the resulting inequality in (D.14a) from 6 = 0 to 6 and interchange the order of integration. One
obtains:

‘AR4L(9)‘ < ‘AR4L(0)‘ + T(Q) + /0 61(9, 9/)AR4L(9/)d9/ + /9 02(9, 9/)A(E4L(9/)d(9/ (D.19)
0 0

where the dominant terms are now originating in (D.16): e.g.using the notation in (D.14a)

0 0
T(9) = /0 Ak (0r)dor /0 by (011)dr = O(e3/46°/) (D.20)

/

and
0

le1(0, 01| < k(e/)Z/ ar (0m)don = O(6r=°/%) (D.21)
0r

In (D.20) we have used the estimate (D.12) of ng(7):

LN 1
@72~ 0) <<1 +e¥/Ar2)3

Ak(0)? = k(0)? — — 1) = 0(%7) (D.22)

Estimates similar to (D.21) hold for c2(6,67) and for the coefficients appearing in the inequality for
A¢y analogous to (D.19). Defining:

Ac(0) = [AR4L(0)] + M|Adyr(0)| (D.23)

and adding (D.19) and its analogon for A,z one obtains:

Ac() < Ty (6) + /0 ' (01 Ac(01)dor (D.24)
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where T7(0) obeys an estimate like (D.20) and d(6) an estimate like (D.21). Gronwall’s inequality
implies then:
Ao () = O(3/46°/%) (D.25)

and thus vanishes as ¢ — 0 on intervals of # of order e~%/3 with § < 3/8. With this, the difference
between the value Ryr (t = 7/2) = Rar f(e) and the asymptotic value R4z, £(0) obtained from the
equation with € = 0 is:

|Raz,f(€) — Rar s (0)| < |Ryp f(e) — Rape(0)| + [Rape(0) — Raro(0)] + [Raro(0) — Ray(0)] (D.26)

For § = O(e=%/3) ,§ < 3/8, the first term is O(c?/3) (cf.the comments on (D.7)), the second term
is O(3/4759/3) (cf. eqn. (D.25)) and the third term is also of O(8~1/2) = O(£2/3) . For any choice
of § < 3/8, the difference (D.26) vanishes as ¢ — 0. Inverting the transformations leading from
Rp(0) to Ryr(6), this result holds also for the original variables Ry, Ry, because k(6) approaches
k(e =0,60) = 1/7(6)1/? as € — 0 on the whole r-interval [1,7/2/e3/8]. We obtain thus the statement
of Lemma 6.1. From this argument it follows that the asymptotic value of Ry, (0) is approached closely
even in the "transition domain" between the boundary layer region and that where t = O(1). This
limiting value for Ry, may be obtained once for all by solving the boundary layer equation for X (¢) for
t>0 using for X p(t) the simple approximation X p(t) ~ £'/319(7) and looking at the asymptotic value
of Rr(6). It turns out to be ~ 0.844 Clearly, the same argument as above serves to show that the phase
difference Agyz () tends to zero as € — 0 and thus justify the contents of Lemma 6.3.The limiting
value <;73L7f(0) depends on the choice of 7y (the origin of the variable 0g; for 79 = 15,(13L7f(0) ~ 0.14)

E. The Evaluation of some Integrals

In this Appendiz we drop for simplicity the index L used in Section 6:R(0) = Ry, -(0), etc. To evaluate
(6.50) we add and subtract R(6(7/2))(0R/0Ry)(#) and we are thus led to the evaluation of the integrals:

o(r/2)
7, = /O k(@)?(f;(e)(me) — R(0(x/2))d0 (F.1)

0(x/2)
I, = /O k(0)2R(0) [(;f(]) ) — <§g)) (9@/2))] i (F.2)

For Z; we use the boundedness of 0R/0OR, and the relation:
R(0) = R4(0) + O(k(9)) (E.3)

obtained by iteration of (5.9a),(5.9b) to obtain:
o(r/2)
7 < const/ k(0)*(|R4(0) — Ra(0(m/2))| + O(k(0))do
0

0(m/2) 0(m/2) 0(m/2)
< const(/ k(0)3d0) + O / k‘(G/)2d9// k(6m)*dorm)
0 0 [%

!

(E.4)

where we have used (D.7) to evaluate the difference |R4(6) — R4(6(7/2))| and the fact that dR(6) is
bounded (see text following eqn.(6.31)). Now, both integrals in (E.4) are bounded so that we deduce:

I < © (E5)

Using Lemma 6.4 we may also conclude that Z; has a limit as € — 0.
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For 7y we write, using (6.24a):
Iy =11 + 12 (E.6)

o(r/2)
Zu= [ k07 R0) |G ) @0+ 00 - (55 ) @m0+ Othtn/2) | a8 ()

Too = /O " k(6)2R(0) [(a¢4 (9)) O(k(0)) — <a¢’4(9(n/z))> O(k:(&(ﬂ/2))} df

Ry dRy (E.8)

= Too1 + Za22

In (E.7) we replace the difference of the values of R4/0Ry at 6 and 6(7/2) by the integral over the
right hand side of (6.23a). Since both R(6) and dR/ORy(#) are bounded, the integral over the first
term in (6.23a) converges. The second term is more difficult, since ¢/0Ry diverges like /4, so that
the integral from 6 to oo falls off like 1/6/4; this brings a contribution behaving like In(1/v) in Zy;. To
improve on this, we use below the fact that the polynomial P»(z) has zero mean. We expect namely
that the oscillations of P(z) reduce the magnitude of the integrals. Before proceeding, we move to Zas,
where a similar problem occurs. The second term of the integral in (E.8) is negligible, since k(0(7/2))
is exponentially small. In the first term, the factor d¢4/ORy increases like §Y/* (see eqn.(6.37)) so
that the power of 1/0 under the integral is at a first sight 7/8, which is not enough for convergence.
However, as remarked in relation to eqns.(6.24a),(6.24b), the true appearance of this term is (we leave
out the last term):

o /2) 96
_ 3 2 4
Lo —/0 k(0)°R(0) Ry

24 =0+ ¢4(0) (E.9b)

where T'(z4) is a trigonometric polynomial with zero mean (in this case, T'(z4) = sin z4+ (1/3) sin(3z24),
cf.eq.(5.9a),(5.9b). The property of zero mean ensures that there exists another trigonometric polyno-
mial (which may be also chosen to have zero mean)S(z4) so that:

(0)T(24)d0 (E.9)

as

B =T (E.10)

We transform then Zso; by partial integration:

9¢s 1 "
T = KOPROV 5 1 dgejdo” 0"

0(w/2) d O 1
- — K (0)R2(0) = S(z4)dO
/0 a9 [ OB O) Ry T+ dgayan) ° Y

(E.11)

Now,the derivatives with respect to 6 in eq.(E.11) have as effect the increase of the rate of falloff of
the integrand with respect to 6: indeed,
W_om. L0%_op
do ' d9OR,
as follows from eqn.(6.9a) and (6.23b), and
d* ¢4 2
— =0(k

as follows from eq.(D.6b). Further, the denominator 1 + d¢4/df is nonvanishing if only we take the
starting point 7y sufficiently large. As a consequence, the integrals containing each of these derivatives
are absolutely convergent. The first term is clearly bounded, so that we conclude that Zoo is itself
bounded. The same argument may be applied to the second term in Z»1: a partial integration increases
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the falloff rate of the integral from 6 to co and ensures thus the boundedness of Zs;. Moreover, after
performing the partial integration, it is possible to take the limit € — 0. Indeed all integrals can be seen
to make sense and be finite even if we set in them formally € = 0 and replace all quantities with those
with superscript 0 ( corresponding to € = 0,see Section 6.2). Moreover, the values of the integrals tend
to those for ¢ = 0 as ¢ — 0. To see this, one notices that: (i)since all integrals extended from 0 to co
are absolutely convergent, the contribution of the interval (¢7%,0(7/2)), s > 0 may be made arbitrarily
small, for € small enough.(ii) The departure of the various quantities of interest (R(0), 0R/0Ry(0), etc.)
from their values for ¢ = 0 (indexed with a superscript "“0"” in Section 6.2) is estimated by expressions
like €20 with a > 0,b > O(see eqns.(6.44),(D.25)).Their integrals over intervals (0,7%) are quantities
of O(e%~(+1)) This is a positive power of € if s < a/(b+ 1). This shows that, indeed, all integrals
are continuous at € = 0

F. On the Invariant Sets of the Circle Map II

In this Appendix a proof is given for Lemma 7.2.

F.1. General Comments

(1)We restrict ourselves to 0 < 8 < m; it follows we can assume —7 < x < 7. It is of some advantage
to assume —7/2 < ¥ < 37/2 and to write:

Y=n/2+%, II(x) = —Bsin(x + %) (F.1)
With this, eqns. (7.25),(7.26),(7.27) for Ba,,524 are changed to the unified form :
Bousin(Bay + 2) = /2 + X(mod(21)),  Pou # 7/2 — % = Bru(mod(2)) (F.2)

Bagsin(Bag — B) = 7/2 — S(mod(2n)),  Paq # /2 — 3 = Big(mod(2r)) (F.3)

The solutions Ba,, B2q correspond to ("‘superstable"’) period two orbits passing through the maxima
(at xar = —7/2 — %) and minima(at x, = 7/2 — ) of I(x), eq.(F.1)*7. The specification (mod2r)
means for (g, foq that the quantity must be transferred to the interval (—m,7) through suitable
addition or subtraction of 27w. The values of fSy,, 814 are also solutions of the equations satisfied by
Bou, Boq and immediately precede the latter. They play a role only if they are positive and less than
(after 27 translation). Eqns.(F.2),(F.3) show the symmetry:

Bou(—%) = Boa(X) (F.4)

In Fig.14 we show the appearance of the solutions B2, 24(X) in the ¥ — (—f) plane of Fig.11. The
right hand branch (with respect to ¥ = 0)corresponds to faq(X), the left hand one (small squares)to
B2u(z)~ R

(ii)For any o € (=4, /), the equation II(8,%;x) = « has two solutions with —7 < x < 7. If
a = x+(x-) is a fixed point of II, we denote its pair by x+(x—) (If the fixed point is positive, it is
denoted by x4+ > 0, otherwise by x_ < 0).

(iii)According to (7.13), S(II) < 0. This has the consequences (see Collet & Eckmann [1983,
p.97]):(a)S(ITP) < 0 38 for all p=>0; (b)|d(IIP)/dx| cannot have a strictly positive minimum; (c)if
dIT? /dx does not change sign for x € [a,b] and II? has three fixed points there, the middle one is
unstable and the other two are stable; (d)II? cannot have more than three fixed points in an interval
[a, b] where dITP /dx > 0(< 0).

3TAt B = B1u(B1a) the fixed point lies at the maximum (minimum) of II(x)
3 oTlo...oII (p times)= IIP
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Figure 14: The [-values for superstable orbits

F.2. The situation > = —7

At ¥ = —71 (X = —7/2), II may be decomposed into two maps I, TI_ of [—5,0], [0, 5] into them-
selves.From (F.2), (F.3) one verifies that 1, = f1q = 7/2, 7/2 < Poy, P2qg < T.

If <1, only x =0 is a fixed point and II is a contraction (Lemma 7.1). If 8 > 1, there are three
fixed points, x—, xo = 0, x+; Xo is unstable. If 8 < 7/2, II; contracts the interval [0, x| into itself
and to x4. Indeed, on [0, x4],(1)II4(x) is monotonically increasing,(ii)II;(x) — x > 0 and vanishes
only at the ends,(iii)II;+ (x) < x4 since 0 = IT (x4) — x4+ > 4 (x) — x+- It follows that, for any
X € [0, x4] the monotonically increasing sequence {x,II(x),11?(x)...} has a limit which can only be
X+- Further, the interval x4, 5] is mapped into itself and (after iterations) to x. Indeed, for any y in
this interval, x4+ < II;(x) < x so that the sequence {IIP(x)} converges to x4. If 8 =m/2, x4 = 7/2.

Consider next the interval 7/2 < 8 < Bp(3% = —7) (see Fig.14).Now x4 > 7/2 and x4 < 7/2. The
iterates of any point in [0, ¥4+] reach at some stage the interval [x4, x+]. Indeed, the function IT ()
is monotonically increasing on [0, X+ so that the sequence {x, I (x)..IT% (x)} increases monotonically
until TT¥ () gets larger than x7y. Then the following transformations under I are obvious:

X+ x+] = X+, 8] = [+ (8), x+]- (F.5)

Now, for f < ﬁgu(f) = —1I),
I (B) =psing > m/2 (F.6)

(cf.(F.2)) so that the last interval is contained in [r/2, x4].Thus IIZ maps [r/2, x+] into itself. The
same is true for [x4, ] which is mapped by IL; into [r/2, x+] and by II% into itself (cf.(F.5)). Tt is
also true that, for x € [7/2, B]:

(I2)/(x) = TLe/(ILy () 4/ (x) > 05 (F.7)

because < m. This inequality is true for all 8 € [7/2, B2,]. It follows from the property S(II) < 0,
(7.13) that 112 has at most three fixed points in [7/2, 3].

We show now that, if 8 < Bp(< B2u) the only invariant set of II2 in [r/2, 8] is {x+}. Indeed, x
is the only root of I12 (x) = x in [r/2, 8] in this interval of values of 3. For x = /2, I12 (y) > x and
for x = B, 1?2 (x) < x. Thus, for all x € [7/2,x+] , I3 (x) > x and for all x € [y, 8], IZ(x) < x.
It follows that for x € [7/2, x| the sequence {X, Hi(X)} is monotonically increasing and can only
converge to x4. Similarly { X5 Hi(x)} is monotonically decreasing for x € [x4, 5] and converges to
X+- Thus the only invariant set is indeed {x+}.
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We now turn to the situation Sp < 8 < f2,. There are now three points (xr,x+,Xg) in [7/2, 5]
where Hi(x) — x changes sign. Consequently, the sequences {X,Hi(x)....} converge (monotonically
increasing or decreasing) to xr or xg according to whether they start in [7/2, x4] or in [x4+, 5]. Now,
the image x 1./ of x, under I1} must be a fixed point of II2 because IT% (xz) = % (x1/) = I+ (xz) = xz/
so that xr/ = xr. Thus x4+ and an orbit of period two exhaust the invariant sets of II; for 8 < [a,.
The discussion of II_ is totally symmetric to the above with 8o, replaced by (£a4.

To conclude, if 3 = —m, Boy = Boq and in the interval 0 < 8 < (9, the mapping II has no other
invariant sets apart from at most three fixed points and two orbits of period two.

F.3. The general situation

The arguments concerning the contraction of intervals to the fixed points of II and I1? may all be taken
over from the situation 3 = — of the previous section. We describe only the main features.

()Assume X = -7 + 0, § < 7/2. As 6 = 7/2,81u(2) = 0, B1a(X) = 7, fou(2) = 7/2, Bou(E) <
B2q(2) and Bg increases. (a)if B < Bs(D) (cf.eq.(7.14)), there exists a single fixed point x4 > 0;
if further 8 < Blu(i) = 7/2 — J, then x4 < x4 and all points in [—/3, 3] are attracted to x4. If
Bs(2) > B > Biu, but B < Bau, then ¥4+ < x4 and under II:

(=8, 8] = [X+>x+] = [x+, 8] = [H(B), x+] C [7/2 = J, x+]

since foy = I(B) > By = /2 — 5. As before, this implies (I1?)7 > 0 on (7/2 — 3, 3). For Bp < B <
Bou < Bs there appear two further fixed points of II%, to which the intervals on the left and right of
X+ are contracted under IT12. (b)If 8 > Bg(fl) there are two further fixed points x— < xo < 0, x— is
stable, xo unstable. The interval [xo, X+] is mapped eventually into [X4, x+] and the further evolution
is the same as above. If § < 14 = 7/2 40, x— < x— and the interval (x_, xo) is contracted under II
to x—. If Bag > B > P14, X— > x— and (possibly after iteration)

[X=, xo0] = [x—sX=] =[-8, x-] = X, I(-8)] C [x—, —7/2 — 4]

The last inclusion follows from g > —II(—f3) > B14. A consequence of this inclusion is that (I1?)/(y) >
0 for x € [x—,—7/2 — 9], similarly to (F.7). If 8 < B, one concludes that the only invariant set in
[—5, x0] is {x-}- If B> B astable orbit of period two appears, but no other invariant sets. Thus, for
S € [—m, —m/2] ,the invariant set of IT consists of at most three fixed points and two orbits of period
two. The invariant set depends on the value of by (as 0 approaches 7/2, the "‘lower" orbit of period
two disappears).

(i)If £ € [—7/2,0], one verifies that B, (X) < 7/2 and Bou(—7/2) = B24(0) = 7/2 (cf. Fig. 14)
- also oy < Bog with equality at ¥ = 0. Further, 8g(3) > m/2 so that there is no fixed point in
x < 0. For all 8 < fBa,, there is only one fixed point at x+ > 0. Let x = max[—/3,x%], (X3 < 0).
The image under IT of [X, x+] is [x4,8]. The latter is mapped back onto (IL(3), x+) C [-7/2 — 2, x4].
Since 8 < /2 — % (the latter is the position of the minimum), it follows as before that (II2)7 > 0 on
[—7/2—3%, 8]. This interval may thus contain one or three fixed points of 12, Repeating the argument
of the previous situation, we conclude that the invariant sets of II consist of at most one fixed point
and one orbit of period two.

(i) If € [0, /2], the situation is totally symmetrical to the previous one, with Baq now interchanged
with fg,, (cf.Fig.14) and the unique fixed point of II being now situated at y_— < 0. The invariant set
of II consists of at most one fixed point and one 2-orbit.

(iv)If 3 € [r/2, 7], the situation is symmetrical (in the sense above) to that in (i), with the same
conclusion. This ends the justification of Lemma 7.2
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